Table 3: Size, Power and Frequency Distribution of the number of change-points obtained
with the Lavielle and Moulines (2000) test when there is a single break at 0.5T of the sample in
the GARCH process.
Samples, T |
1000 |
1000 |
Lavielle & Moulines |
BIC |
LWZ BIC LWZ |
Segments, tk = 5 | ||
Returns |
( rt )2 |
|rt| |
Number of Breaks |
01≥20 |
1≥20 1≥20 1≥2 |
H0 : Univariate GARCH, rо,t = uо,tjhoj, hо,t = ω0 + αou2,t-1 + βoho,t-1, with (ωо,αo,βq):
DGP1: (0.4, 0.1, 0.5) 0.96 0.03 0.01 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00
DGP2: (о.1, о.1, о.8) 0.88 о.о7 о.о5 1.00 о.оо о.оо 0.93 о.о7 о.оо 1.00 о.оо о.оо
HA : Break in the dynamics of volatility with parameters (β0, β 1 )
DGP1: (0.5,0.6) |
0.72 |
0.24 |
0.04 |
1.00 |
0.00 |
0.00 |
0.79 |
0.20 |
0.01 |
1.00 0.00 0.00 | ||
DGP1: (0.5,0.8) |
0.00 |
0.95 |
0.05 |
0.00 |
1.00 |
0.00 |
0.00 |
0.93 |
0.07 |
0.00 |
1.00 |
0.00 |
DGP2: (0.8,0.7) |
0.21 |
0.75 |
0.03 |
0.85 |
0.15 |
0.00 |
0.20 |
0.75 |
0.05 |
0.84 |
0.16 |
0.00 |
DGP2: (0.8,0.4) |
0.00 |
0.72 |
0.28 |
0.00 |
1.00 |
0.00 |
0.00 |
0.86 |
0.14 |
0.00 |
1.00 |
0.00 |
HB : Break in the constant of volatility with parameters (ω 0, ω 1 )
DGP1: (0.4,0.5) 0.85 0.14 0.01 1.00 0.00 0.00 0.82 0.18 0.00 1.00 0.00 0.00
DGP1: (0.4,0.8) 0.00 0.94 0.06 0.38 0.62 0.00 0.00 1.00 0.00 0.36 0.64 0.00
DGP2: (0.1,0.3) 0.00 0.94 0.06 0.18 0.82 0.00 0.00 0.99 0.01 0.13 0.87 0.00
DGP2: (0.1,0.5) 0.00 0.86 0.14 0.00 1.00 0.00 0.00 0.95 0.05 0.00 1.00 0.00
H C : Break in the variance of the error with parameters (σ u 0, σ u 1 )
DGP1: (0,1.1)
DGP1: (0,1.5)
DGP1: (0,3)
0.01 0.49 0.50
0.00 0.63 0.37
0.00 0.60 0.40
0.01 0.94 0.05
0.00 0.97 0.03
0.00 0.98 0.02
0.01 0.57 0.42
0.00 0.58 0.42
0.00 0.53 0.47
0.01 0.95 0.04
0.00 0.97 0.03
0.00 0.93 0.07
Hf : Outliers in the error, u0 - N(0,1) (μu 1 = 5 every 250 observations).
DGP1: u 1 - N(5,1) 0.99 0.01 0.00 1.00 0.00 0.00 0.99 0.01 0.00 1.00 0.00 0.00
DGP2: u 1 - N(5,1) 0.98 0.02 0.00 1.00 0.00 0.00 0.92 0.06 0.02 1.00 0.00 0.00
Notes: The Lavielle and Moulines (2000) test is described in section 1.2. The Bayesian Information Criterion (BIC) and its
modification by Liu et al. (1997) denoted as LWZ are used. The simulations focus on DGP1, DGP2, T = 1000 for 500 trials. For
comparison purposes the alternative hypotheses of change points are similar to the K&L simulations (Table 1) and extended to larger
breaks. Reported is the frequency distributionn of the breaks detected. The highlighted numbers refer to the true number of
change-points in the simulated process.
26
More intriguing information
1. Towards Learning Affective Body Gesture2. Does Presenting Patients’ BMI Increase Documentation of Obesity?
3. Wirkung einer Feiertagsbereinigung des Länderfinanzausgleichs: eine empirische Analyse des deutschen Finanzausgleichs
4. The name is absent
5. Equity Markets and Economic Development: What Do We Know
6. The name is absent
7. The name is absent
8. Passing the burden: corporate tax incidence in open economies
9. Willingness-to-Pay for Energy Conservation and Free-Ridership on Subsidization – Evidence from Germany
10. For Whom is MAI? A theoretical Perspective on Multilateral Agreements on Investments