Detecting Multiple Breaks in Financial Market Volatility Dynamics



Table 3: Size, Power and Frequency Distribution of the number of change-points obtained
with the Lavielle and Moulines
(2000) test when there is a single break at 0.5T of the sample in
the GARCH process
.

Samples, T

1000

1000

LavielleMoulines

BIC

LWZ        BIC        LWZ

Segments, tk = 5

Returns

( rt )2

|rt|

Number of Breaks

0120

120   120   12

H0 : Univariate GARCH, rо,t = uо,tjhoj, hо,t = ω0 + αou2,t-1 + βoho,t-1, with (ωоoq):

DGP1: (0.4, 0.1, 0.5) 0.96 0.03  0.01 1.00 0.00 0.00 0.98 0.02 0.00  1.00 0.00 0.00

DGP2: (о.1, о.1, о.8) 0.88 о.о7 о.о5 1.00 о.оо о.оо 0.93  о.о7 о.оо  1.00 о.оо о.оо

HA : Break in the dynamics of volatility with parameters (β0, β 1 )

DGP1: (0.5,0.6)

0.72

0.24

0.04

1.00

0.00

0.00

0.79

0.20

0.01

1.00 0.00 0.00

DGP1: (0.5,0.8)

0.00

0.95

0.05

0.00

1.00

0.00

0.00

0.93

0.07

0.00

1.00

0.00

DGP2: (0.8,0.7)

0.21

0.75

0.03

0.85

0.15

0.00

0.20

0.75

0.05

0.84

0.16

0.00

DGP2: (0.8,0.4)

0.00

0.72

0.28

0.00

1.00

0.00

0.00

0.86

0.14

0.00

1.00

0.00

HB : Break in the constant of volatility with parameters (ω 0, ω 1 )

DGP1: (0.4,0.5)      0.85  0.14 0.01  1.00 0.00 0.00 0.82 0.18 0.00  1.00 0.00 0.00

DGP1: (0.4,0.8)      0.00 0.94 0.06 0.38 0.62 0.00 0.00  1.00 0.00 0.36 0.64 0.00

DGP2: (0.1,0.3)      0.00 0.94 0.06 0.18 0.82 0.00 0.00 0.99 0.01  0.13  0.87 0.00

DGP2: (0.1,0.5)      0.00 0.86 0.14 0.00  1.00 0.00 0.00 0.95 0.05  0.00  1.00 0.00

H C : Break in the variance of the error with parameters (σ u 0, σ u 1 )

DGP1: (0,1.1)

DGP1: (0,1.5)

DGP1: (0,3)


0.01 0.49 0.50

0.00 0.63 0.37

0.00 0.60 0.40


0.01 0.94 0.05

0.00 0.97 0.03

0.00 0.98 0.02


0.01 0.57 0.42

0.00 0.58 0.42

0.00 0.53 0.47


0.01 0.95 0.04

0.00 0.97 0.03

0.00 0.93 0.07


Hf : Outliers in the error, u0 - N(0,1) u 1 = 5 every 250 observations).

DGP1: u 1 - N(5,1)  0.99 0.01 0.00  1.00 0.00 0.00 0.99 0.01 0.00  1.00 0.00 0.00

DGP2: u 1 - N(5,1)  0.98 0.02 0.00  1.00 0.00 0.00 0.92 0.06 0.02  1.00 0.00 0.00

Notes: The Lavielle and Moulines (2000) test is described in section 1.2. The Bayesian Information Criterion (BIC) and its
modification by Liu et al. (1997) denoted as LWZ are used. The simulations focus on DGP1, DGP2,
T = 1000 for 500 trials. For
comparison purposes the alternative hypotheses of change points are similar to the K&L simulations (Table 1) and extended to larger
breaks. Reported is the frequency distributionn of the breaks detected. The highlighted numbers refer to the true number of
change-points in the simulated process.

26



More intriguing information

1. Comparative study of hatching rates of African catfish (Clarias gariepinus Burchell 1822) eggs on different substrates
2. AN EMPIRICAL INVESTIGATION OF THE PRODUCTION EFFECTS OF ADOPTING GM SEED TECHNOLOGY: THE CASE OF FARMERS IN ARGENTINA
3. The name is absent
4. The name is absent
5. Managing Human Resources in Higher Education: The Implications of a Diversifying Workforce
6. The name is absent
7. The Role of Immigration in Sustaining the Social Security System: A Political Economy Approach
8. Disturbing the fiscal theory of the price level: Can it fit the eu-15?
9. Visual Artists Between Cultural Demand and Economic Subsistence. Empirical Findings From Berlin.
10. MULTIPLE COMPARISONS WITH THE BEST: BAYESIAN PRECISION MEASURES OF EFFICIENCY RANKINGS
11. The name is absent
12. The name is absent
13. AGRICULTURAL TRADE LIBERALIZATION UNDER NAFTA: REPORTING ON THE REPORT CARD
14. Infrastructure Investment in Network Industries: The Role of Incentive Regulation and Regulatory Independence
15. Research Design, as Independent of Methods
16. Migration and employment status during the turbulent nineties in Sweden
17. Political Rents, Promotion Incentives, and Support for a Non-Democratic Regime
18. Tariff Escalation and Invasive Species Risk
19. The name is absent
20. Towards a Mirror System for the Development of Socially-Mediated Skills