Detecting Multiple Breaks in Financial Market Volatility Dynamics



Table 5: Size, Power and Frequency Distribution of the number of change-points obtained
with the Lavielle and Moulines
(2000) test when there are two breaks at 0.33T and 0.67T of the
sample in the GARCH process
.

Samples, T

LavielleMoulines

1000                                        1000

BIC             LWZ             BIC               LWZ

Returns

( rt )2                                                                                              |rt|

Number of Breaks

0123012301230123

Segments           tk

HA : Break in the dynamics of volatility with parameters (β0, β1, β2)

DGP1:

(0.5,0.6,0.8)

5

0.00

0.95

0.05

0.00

0.01

0.99

0.00

0.00

0.00

0.98

0.02

0.00

0.06

0.94

0.00

0.00

3

0.00

1.00

0.00

0.00

0.01

0.99

0.00

0.00

0.00

0.97

0.03

0.00

0.02

0.98

0.00

0.00

(0.5,0.6,0.3)

5

0.14

0.47

0.39

0.00

0.94

0.04

0.02

0.00

0.16

0.56

0.28

0.00

0.93

0.07

0.00

0.00

3

0.20

0.50

0.28

0.00

0.97

0.03

0.00

0.00

0.19

0.62

0.19

0.00

0.96

0.04

0.00

0.00

DGP2:

(0.8,0.5,0.8)

5

0.00

0.03

0.90

0.06

0.70

0.19

0.11

0.00

0.01

0.00

0.99

0.36

0.06

0.58

0.00

0.00

3

0.03

0.97

0.00

0.00

0.68

0.32

0.00

0.00

0.00

0.01

0.99

0.00

0.51

0.08

0.41

0.00

HB : Break in the constant of volatility with parameters (ω0, ω 1, ω2)

DGP1:

(0.4,0.5,0.8)

5

3

0.05

0.02

0.91

0.97

0.04

0.01

0.00

0.00

0.66

0.52

0.34

0.48

0.00

0.00

0.00

0.00

0.04

0.05

0.94

0.94

0.02

0.01

0.00

0.00

0.63

0.69

0.37

0.31

0.00

0.00

0.00

0.00

(0.4,0.8,0.4)

5

0.09

0.00

0.90

0.01

0.92

0.00

0.08

0.00

0.09

0.02

0.89

0.00

0.92

0.00

0.08

0.00

3

0.02

0.00

0.98

0.00

0.90

0.00

0.10

0.00

0.09

0.01

0.90

0.00

0.97

0.00

0.03

0.00

DGP2:

(0.1,0.2,0.5)

5

0.00

0.82

0.18

0.00

0.01

0.99

0.00

0.00

0.00

0.67

0.30

0.03

0.00

1.00

0.00

0.00

3

0.00

0.91

0.09

0.00

0.00

1.00

0.00

0.00

0.00

0.72

0.28

0.00

0.00

1.00

0.00

0.00

(0.1,0.5,0.8)

5

0.00

0.18

0.79

0.03

0.00

0.99

0.01

0.00

0.00

0.36

0.60

0.04

0.00

0.96

0.04

0.00

3

0.00

0.20

0.80

0.00

0.00

1.00

0.00

0.00

0.00

0.34

0.66

0.00

0.00

0.91

0.09

0.00

(0.1,0.5,0.1)

5

0.00

0.00

0.95

0.05

0.01

0.00

0.99

0.00

0.00

0.00

0.94

0.06

0.00

0.00

1.00

0.00

3

0.00

0.00

1.00

0.00

0.01

0.00

0.99

0.00

0.00

0.00

1.00

0.00

0.02

0.00

0.98

0.00

(0.1,0.3,0.1)

5

0.00

0.00

0.99

0.01

0.77

0.00

0.23

0.00

0.02

0.02

0.93

0.03

0.75

0.02

0.23

0.00

3

0.01

0.02

0.97

0.00

0.68

0.00

0.32

0.00

0.04

0.00

0.96

0.00

0.71

0.02

0.27

0.00

H1C

: Break in the variance of the error with parameters (σu0,

σu1u2)

DGP1:

(0,1.5,3)

5

0.00

0.78

0.22

0.00

0.00

0.98

0.02

0.00

0.00

0.37

0.56

0.07

0.00

0.96

0.04

0.00

3

0.00

0.97

0.03

0.00

0.00

1.00

0.00

0.00

0.00

0.53

0.47

0.00

0.00

1.00

0.00

0.00

(0,3,5)

5

0.00

0.76

0.24

0.00

0.00

0.96

0.04

0.00

0.00

0.00

0.81

0.19

0.00

0.00

0.98

0.02

3

0.00

0.96

0.04

0.00

0.00

1.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

1.00

0.00

28



More intriguing information

1. The name is absent
2. The name is absent
3. Permanent and Transitory Policy Shocks in an Empirical Macro Model with Asymmetric Information
4. The name is absent
5. Citizenship
6. The Response of Ethiopian Grain Markets to Liberalization
7. The name is absent
8. Beyond Networks? A brief response to ‘Which networks matter in education governance?’
9. THE EFFECT OF MARKETING COOPERATIVES ON COST-REDUCING PROCESS INNOVATION ACTIVITY
10. The name is absent