Detecting Multiple Breaks in Financial Market Volatility Dynamics



Table 5: Size, Power and Frequency Distribution of the number of change-points obtained
with the Lavielle and Moulines
(2000) test when there are two breaks at 0.33T and 0.67T of the
sample in the GARCH process
.

Samples, T

LavielleMoulines

1000                                        1000

BIC             LWZ             BIC               LWZ

Returns

( rt )2                                                                                              |rt|

Number of Breaks

0123012301230123

Segments           tk

HA : Break in the dynamics of volatility with parameters (β0, β1, β2)

DGP1:

(0.5,0.6,0.8)

5

0.00

0.95

0.05

0.00

0.01

0.99

0.00

0.00

0.00

0.98

0.02

0.00

0.06

0.94

0.00

0.00

3

0.00

1.00

0.00

0.00

0.01

0.99

0.00

0.00

0.00

0.97

0.03

0.00

0.02

0.98

0.00

0.00

(0.5,0.6,0.3)

5

0.14

0.47

0.39

0.00

0.94

0.04

0.02

0.00

0.16

0.56

0.28

0.00

0.93

0.07

0.00

0.00

3

0.20

0.50

0.28

0.00

0.97

0.03

0.00

0.00

0.19

0.62

0.19

0.00

0.96

0.04

0.00

0.00

DGP2:

(0.8,0.5,0.8)

5

0.00

0.03

0.90

0.06

0.70

0.19

0.11

0.00

0.01

0.00

0.99

0.36

0.06

0.58

0.00

0.00

3

0.03

0.97

0.00

0.00

0.68

0.32

0.00

0.00

0.00

0.01

0.99

0.00

0.51

0.08

0.41

0.00

HB : Break in the constant of volatility with parameters (ω0, ω 1, ω2)

DGP1:

(0.4,0.5,0.8)

5

3

0.05

0.02

0.91

0.97

0.04

0.01

0.00

0.00

0.66

0.52

0.34

0.48

0.00

0.00

0.00

0.00

0.04

0.05

0.94

0.94

0.02

0.01

0.00

0.00

0.63

0.69

0.37

0.31

0.00

0.00

0.00

0.00

(0.4,0.8,0.4)

5

0.09

0.00

0.90

0.01

0.92

0.00

0.08

0.00

0.09

0.02

0.89

0.00

0.92

0.00

0.08

0.00

3

0.02

0.00

0.98

0.00

0.90

0.00

0.10

0.00

0.09

0.01

0.90

0.00

0.97

0.00

0.03

0.00

DGP2:

(0.1,0.2,0.5)

5

0.00

0.82

0.18

0.00

0.01

0.99

0.00

0.00

0.00

0.67

0.30

0.03

0.00

1.00

0.00

0.00

3

0.00

0.91

0.09

0.00

0.00

1.00

0.00

0.00

0.00

0.72

0.28

0.00

0.00

1.00

0.00

0.00

(0.1,0.5,0.8)

5

0.00

0.18

0.79

0.03

0.00

0.99

0.01

0.00

0.00

0.36

0.60

0.04

0.00

0.96

0.04

0.00

3

0.00

0.20

0.80

0.00

0.00

1.00

0.00

0.00

0.00

0.34

0.66

0.00

0.00

0.91

0.09

0.00

(0.1,0.5,0.1)

5

0.00

0.00

0.95

0.05

0.01

0.00

0.99

0.00

0.00

0.00

0.94

0.06

0.00

0.00

1.00

0.00

3

0.00

0.00

1.00

0.00

0.01

0.00

0.99

0.00

0.00

0.00

1.00

0.00

0.02

0.00

0.98

0.00

(0.1,0.3,0.1)

5

0.00

0.00

0.99

0.01

0.77

0.00

0.23

0.00

0.02

0.02

0.93

0.03

0.75

0.02

0.23

0.00

3

0.01

0.02

0.97

0.00

0.68

0.00

0.32

0.00

0.04

0.00

0.96

0.00

0.71

0.02

0.27

0.00

H1C

: Break in the variance of the error with parameters (σu0,

σu1u2)

DGP1:

(0,1.5,3)

5

0.00

0.78

0.22

0.00

0.00

0.98

0.02

0.00

0.00

0.37

0.56

0.07

0.00

0.96

0.04

0.00

3

0.00

0.97

0.03

0.00

0.00

1.00

0.00

0.00

0.00

0.53

0.47

0.00

0.00

1.00

0.00

0.00

(0,3,5)

5

0.00

0.76

0.24

0.00

0.00

0.96

0.04

0.00

0.00

0.00

0.81

0.19

0.00

0.00

0.98

0.02

3

0.00

0.96

0.04

0.00

0.00

1.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

1.00

0.00

28



More intriguing information

1. THE RISE OF RURAL-TO-RURAL LABOR MARKETS IN CHINA
2. Inflation and Inflation Uncertainty in the Euro Area
3. Proceedings from the ECFIN Workshop "The budgetary implications of structural reforms" - Brussels, 2 December 2005
4. The name is absent
5. Structure and objectives of Austria's foreign direct investment in the four adjacent Central and Eastern European countries Hungary, the Czech Republic, Slovenia and Slovakia
6. Weak and strong sustainability indicators, and regional environmental resources
7. National curriculum assessment: how to make it better
8. ADJUSTMENT TO GLOBALISATION: A STUDY OF THE FOOTWEAR INDUSTRY IN EUROPE
9. Macro-regional evaluation of the Structural Funds using the HERMIN modelling framework
10. The name is absent