2.2 Limiting Behavior of the Statistic
We can now establish the limiting distribution of the proposed test statistics based on Zn,m,r ,
defined in (3), for both the cases where n = m and m/n → 0, as m, n →∞.
Theorem 1. Let Assumption 1 hold.
Under H0,
(i)a if, as n,m, ξ-1 → ∞, nξn → ∞ and for any arbitrarily small ε > 0, n1 /2+εξn → 0, and if
m = n, then, pointwise in r ∈ (0, 1)
Zn,r -→ Zr - MN (θ, 2 [∞ σ4(a) LX(r, a)(LX(ɪ,a)- LX(r, a)) da} , (6)
∞ LX (1, a)
where Zn,r ≡ Zn,n,r and
ɪɪ r 2
LX(r,a) = ψim ψ σ2(a) yθ 1 {Xu∈[α,α+ψ]}σ (Xu)du
denotes the standardized local time of the process Xt .
(i)b Define Zn = maxj=1 ,...,J ∣ Zn,rj ∣ and Z = maxj∙=1 ,...,J ∣ Zrj ∣, where 0 < r 1 < ... < rj-1 <
rj < . . . < rJ < 1, for j =1, . . . , J, with J arbitrarily large but finite. If, as n, m, ξn-1 →∞,
nξn → ∞, and, for any ε > 0 arbitrarily small, n1 /2+εξn → 0, and if m = n, then
Zn -→ Z,
with
Zr1
Zr 2
.
.
.
ZrJ
/ /
- MN 0,
V (r1,r1)
V (r2,r1)
V (rJ, r1)
V(r1,r2) .. . V(r1,rJ)
V (r2,r2) ... V (r2 ,rJ)
.. .. ..
. ..
V(rJ, r2) . . . V(rJ,rJ)
(7)
where ∀ r,r',
V ( r,r' ) = V ( r ,r) = 2 [ σ4 (a)
∞
LX (min( r, r' ) ,a )( LX (1 ,a ) - LX (min( r, r' ) ,a ))d
LX (1 ,a ) a.
(i)c If, as n, m, ξn 1 → ∞, nξn → ∞ and nξn → 0, and, for any ε > 0 arbitrarily small, m/n1 ε →
0, then
Zn,m,r -d→ ZMr - MN 0,2 ∞ σ4 (a) LX(r, a)da .