Nonparametric cointegration analysis



JxFk(x)dx о 0,                                                                       (28)

respectively, and to verify afterwards that the optimal weight functions Fk satisfy the stronger
conditions (6) and (7).

Without loss of generality we may represent the functions Fk by their Fourier flexible
form

∞∞

Fk(x) α αo,k +αj,kcos(2jπx) +βj,ksin(2jπx)

Then by some tedious but straightforward calculations it can be shown that:

Lemma 6. The conditions (27), (28), (8), (9), and (10) now read as:

Fk(χ)dχ α αok - 0


;(χ)dχ - -F-β
2π J=1 J


ffFk(x )Fm (y )min(x, y ) dxdy


8π2



÷Σ

J=1


βJ,kβJ,


0 if km ,


F(x ) [Fm (y ) dydx = -r- Σ
4 4                  4 П 7=1


β

J, kt^J, m


Vj-1


Σ

j=1


β

J,m J,k


[Fk(x )Fm (x ) dx = ʌ


V α..α.

X-7   j, k j,

Ij'1


ʌ

-∞

÷    βjkβ rnt


0 if km .


Combining (1) and the results of Lemma 6, we have

16



More intriguing information

1. The urban sprawl dynamics: does a neural network understand the spatial logic better than a cellular automata?
2. Aktive Klienten - Aktive Politik? (Wie) Läßt sich dauerhafte Unabhängigkeit von Sozialhilfe erreichen? Ein Literaturbericht
3. Developing vocational practice in the jewelry sector through the incubation of a new ‘project-object’
4. Rent-Seeking in Noxious Weed Regulations: Evidence from US States
5. BILL 187 - THE AGRICULTURAL EMPLOYEES PROTECTION ACT: A SPECIAL REPORT
6. The name is absent
7. THE WELFARE EFFECTS OF CONSUMING A CANCER PREVENTION DIET
8. Word searches: on the use of verbal and non-verbal resources during classroom talk
9. The Works of the Right Honourable Edmund Burke
10. Social Balance Theory