Nonparametric cointegration analysis



JJexp(2 i π j 1 x )exp(2 i π j 2 y )min(x, y ) dxdy
x

= exp(2 i π j 1 x)ʃy exp(2 i π j2y)dydx - x exp(2 i πj 1 x)exp(2 i π j2y)dydx

x exp(2 iπ (j'i +j2)x)       ʃ exp(2 iπ (j'i +j2)x)       ʃ exp(2 iπ ji x)

______________dx ʃ I__________LJ___dx + I_________1__dx

(A.42)


2 i π j 2              2      (2 i j 2)2           2 (2 i π j 2)2

ʃx exp(2 iπ (j' 1 +j2) x) ʃxexp(2 iπ j 1 x)

- I____________LJ___dx + I___________1__dx

2       2 i π j 2             2     2 i π j 2

= _    1     + 1(j' 1+j 2=0)

4 π 2j 12      4 π2j 2

and

x

exp(2 i π j 1 x)exp(2 i π j2y)dydx ʃ ʃ
0


exp(2 iπ (j' 1 +j2) x)

2 i π j 2


dx -


exp(2 i π j 1 x )

2 i π j 2


dx


I(j-1÷j 2=0)
2
i π.j,


(A.43)


It follows now from (A.38) and (A.42) that

ʃʃ':(x)Fm(y)min(x,у)dxdy = 2 Σ
jj                                 4π2 j0

(                      V


j2



Λj


4π2


Ij-1


cc




j-i


A

Ï

c....


Ï

c_..„


(A.44)


ʌ Vλ β j,kβ j,
2^t    2 2

j=1     j


V


λ.1


A
. A
β
jm


and it follows from (A.38) and (A.43) that

ʃFk(x )fFm ) dydx = ɪ Σ cjk-j
0      ∙0                  2 i π j≠0    j


« jkβ j


1 τL « ∙t
= ⅛∑ —


4π


Moreover,


45


A
j « β t
Γλ j, mtJ,k


j=1


(A.45)




More intriguing information

1. Political Rents, Promotion Incentives, and Support for a Non-Democratic Regime
2. Financial Development and Sectoral Output Growth in 19th Century Germany
3. Transgression et Contestation Dans Ie conte diderotien. Pierre Hartmann Strasbourg
4. The name is absent
5. For Whom is MAI? A theoretical Perspective on Multilateral Agreements on Investments
6. 101 Proposals to reform the Stability and Growth Pact. Why so many? A Survey
7. Social Balance Theory
8. The name is absent
9. The name is absent
10. HEDONIC PRICES IN THE MALTING BARLEY MARKET