JJexp(2 i π j 1 x )exp(2 i π j 2 y )min(x, y ) dxdy
x
= ∣exp(2 i π j 1 x)ʃy exp(2 i π j2y)dydx - ∣x exp(2 i πj 1 x)∣exp(2 i π j2y)dydx
x exp(2 iπ (j'i +j2)x) ʃ exp(2 iπ (j'i +j2)x) ʃ exp(2 iπ ji x)
______________dx ʃ I__________LJ___dx + I_________1__dx
(A.42)
2 i π j 2 2 (2 i ∏ j 2)2 2 (2 i π j 2)2
ʃx exp(2 iπ (j' 1 +j2) x) ʃxexp(2 iπ j 1 x)
- I____________LJ___dx + I___________1__dx
2 2 i π j 2 2 2 i π j 2
= _ 1 + 1(j' 1+j 2=0)
4 π 2j 12 4 π2j 2
and
x
∣exp(2 i π j 1 x)∣exp(2 i π j2y)dydx ʃ ʃ
0
exp(2 iπ (j' 1 +j2) x)
2 i π j 2
dx -
exp(2 i π j 1 x )
2 i π j 2
dx
I(j-1÷j 2=0)
2 i π.j,
(A.43)
It follows now from (A.38) and (A.42) that
ʃʃ':(x)Fm(y)min(x,у)dxdy = —2 Σ
jj 4π2 j≠0
( V
j2

Λj
4π2
Ij-1
cc

∞

j-i
A
Ï
c....
Ï
c_..„
(A.44)
ʌ Vλ β j,kβ j,
2^t 2 2
j=1 j

V
∞

λ.1
A
. A
βjm
and it follows from (A.38) and (A.43) that
ʃFk(x )fFm (У ) dydx = ɪ Σ cjk-j
0 ∙0 2 i π j≠0 j
« jkβ j
1 τL « ∙t∣
= ⅛∑ —
4π
Moreover,
45
A
j « β t
Γλ j, mtJ,k
j=1
(A.45)
More intriguing information
1. The name is absent2. TWENTY-FIVE YEARS OF RESEARCH ON WOMEN FARMERS IN AFRICA: LESSONS AND IMPLICATIONS FOR AGRICULTURAL RESEARCH INSTITUTIONS; WITH AN ANNOTATED BIBLIOGRAPHY
3. A simple enquiry on heterogeneous lending rates and lending behaviour
4. Ultrametric Distance in Syntax
5. The ultimate determinants of central bank independence
6. INTERACTION EFFECTS OF PROMOTION, RESEARCH, AND PRICE SUPPORT PROGRAMS FOR U.S. COTTON
7. The value-added of primary schools: what is it really measuring?
8. An Efficient Circulant MIMO Equalizer for CDMA Downlink: Algorithm and VLSI Architecture
9. Estimating the Impact of Medication on Diabetics' Diet and Lifestyle Choices
10. PERFORMANCE PREMISES FOR HUMAN RESOURCES FROM PUBLIC HEALTH ORGANIZATIONS IN ROMANIA