JJexp(2 i π j 1 x )exp(2 i π j 2 y )min(x, y ) dxdy
x
= ∣exp(2 i π j 1 x)ʃy exp(2 i π j2y)dydx - ∣x exp(2 i πj 1 x)∣exp(2 i π j2y)dydx
x exp(2 iπ (j'i +j2)x) ʃ exp(2 iπ (j'i +j2)x) ʃ exp(2 iπ ji x)
______________dx ʃ I__________LJ___dx + I_________1__dx
(A.42)
2 i π j 2 2 (2 i ∏ j 2)2 2 (2 i π j 2)2
ʃx exp(2 iπ (j' 1 +j2) x) ʃxexp(2 iπ j 1 x)
- I____________LJ___dx + I___________1__dx
2 2 i π j 2 2 2 i π j 2
= _ 1 + 1(j' 1+j 2=0)
4 π 2j 12 4 π2j 2
and
x
∣exp(2 i π j 1 x)∣exp(2 i π j2y)dydx ʃ ʃ
0
exp(2 iπ (j' 1 +j2) x)
2 i π j 2
dx -
exp(2 i π j 1 x )
2 i π j 2
dx
I(j-1÷j 2=0)
2 i π.j,
(A.43)
It follows now from (A.38) and (A.42) that
ʃʃ':(x)Fm(y)min(x,у)dxdy = —2 Σ
jj 4π2 j≠0
( V
j2

Λj
4π2
Ij-1
cc

∞

j-i
A
Ï
c....
Ï
c_..„
(A.44)
ʌ Vλ β j,kβ j,
2^t 2 2
j=1 j

V
∞

λ.1
A
. A
βjm
and it follows from (A.38) and (A.43) that
ʃFk(x )fFm (У ) dydx = ɪ Σ cjk-j
0 ∙0 2 i π j≠0 j
« jkβ j
1 τL « ∙t∣
= ⅛∑ —
4π
Moreover,
45
A
j « β t
Γλ j, mtJ,k
j=1
(A.45)
More intriguing information
1. Testing Hypotheses in an I(2) Model with Applications to the Persistent Long Swings in the Dmk/$ Rate2. On the Desirability of Taxing Charitable Contributions
3. INSTITUTIONS AND PRICE TRANSMISSION IN THE VIETNAMESE HOG MARKET
4. Optimal Taxation of Capital Income in Models with Endogenous Fertility
5. Markets for Influence
6. The demand for urban transport: An application of discrete choice model for Cadiz
7. Corporate Taxation and Multinational Activity
8. Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State Level, 1963-1997
9. The name is absent
10. The name is absent