Nonparametric cointegration analysis



Note that, since Fk is real valued, we can also represent Fk by

(A.35)


Fk(x) α α0,k + Σ (αj,kcos(2 π jχ) + βj,ksin(2 π jχ)),

where

co,k = αo,k ;  for j 1:   cj


α ., - i β ,
J,k           J,k

-------ɔ-------, cj, k


α ., + i β ,

J, k         ,i, k

2


(A.36)


Since


exp(2iπjχ) III(■=0),


(A.37)


it follows that


F(x)dx O 0 implies c0,k - α0,k - 0,


(A.38)


hence


Fk(x ) = Σ cj, kp(2 i π jx )∙

Next, observe that


(A∙39)


x

0


i π jy ) dy =


p(2 iπ) - 11(j.≠0)
2
i j


÷ xI(j'=0)


(A∙40)


and

x

Jy exp(2 i π jy ) dy =
0


λx exp(2 i π jx)

ч   2iπj


exp(2 i π jx) - 1
(2
i π j )2


ʌ

I(j'≠0)


÷ -2x21(j' 0),


(A∙41)


hence, for j1 0, j2 0,

44



More intriguing information

1. The name is absent
2. The name is absent
3. The name is absent
4. The name is absent
5. PACKAGING: A KEY ELEMENT IN ADDED VALUE
6. Equity Markets and Economic Development: What Do We Know
7. A Note on Productivity Change in European Co-operative Banks: The Luenberger Indicator Approach
8. Monopolistic Pricing in the Banking Industry: a Dynamic Model
9. Evidence-Based Professional Development of Science Teachers in Two Countries
10. Corporate Taxation and Multinational Activity