Migrant Business Networks and FDI



Table 2 - Migrants networks and FDI - Germany

Dependent variable:______

____________________________Outward FDI____________________________

________________________________Inward FDI________________________________

Static

models

Dynamic model

Static models

Dynamic model

Explanatory variables

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

l_TGDP

3,914***

3,356 ***

3,029 ***

3,104***

0,114*

3,813***

3,645 ***

2,792 ***

2,321 ***

0,068

(0,239)

(0,240)

(0,243)

(0,266)

(0,069)

(0,263)

(0,272)

(0,260)

(0,275)

(0,099)

l_sq_GDPDIFF

-0,681 ***

-0,674 ***

-0,607 ***

-0,609 ***

-0,016

-0,603 ***

-0,611 ***

-0,510 ***

-0,514***

-0,016

(0,091)

(0,088)

(0,087)

(0,087)

(0,022)

(0,099)

(0,099)

(0,091)

(0,090)

(0,031)

l_PCGDPDIFF

0,064 ***

0,016

0,024

0,027

0,009 *

0,160***

0,174 ***

0,177 ***

0,210***

0,006

(0,019)

(0,019)

(0,019)

(0,019)

(0,005)

(0,022)

(0,023)

(0,021)

(0,022)

(0,008)

l_DIST

-0,128***

0,145 **

0,166 ***

0,158***

-0,021

-0,573 ***

-0,470 ***

-0,353 ***

-0,295 ***

0,013

(0,050)

(0,057)

(0,057)

(0,058)

(0,014)

(0,067)

(0,080)

(0,075)

(0,074)

(0,026)

l_OPENNESS

0,150

0,405 ***

0,452 ***

0,451 ***

0,030

-0,318 **

-0,208

0,028

0,040

0,018

(0,098)

(0,099)

(0,098)

(0,098)

(0,024)

(0,124)

(0,132)

(0,122)

(0,121)

(0,042)

DUMMYEU15

0,682 ***

0,385 **

0,495 ***

0,520 ***

-0,092 **

1,225 ***

1,108 ***

1,274 ***

1,161 ***

0,155 ***

(0,163)

(0,161)

(0,160)

(0,164)

(0,040)

(0,179)

(0,186)

(0,170)

(0,169)

(0,059)

Dummyoecd

1,495 ***

1,180 ***

1,164 ***

1,570 ***

0,137

-0,171

-0,318

-0,296

-3,395 ***

-0,037

(0,153)

(0,153)

(0,150)

(0,596)

(0,149)

(0,188)

(0,200)

(0,182)

(0,688)

(0,246)

Chrisshare

-0,229 *

0,139

0,001

0,007

0,032

-1,088 ***

-0,986 ***

-1,174 ***

-1,128***

-0,072

(0,122)

(0,125)

(0,127)

(0,127)

(0,031)

(0,177)

(0,183)

(0,169)

(0,167)

(0,059)

GOVERNANCE_Std

2,623***

2,946 ***

2,745 ***

2,741 ***

0,209 ***

3,572 ***

3,908 ***

3,144 ***

2,851 ***

0,137

(0,277)

(0,271)

(0,270)

(0,270)

(0,070)

(0,402)

(0,428)

(0,396)

(0,395)

(0,143)

Ijmmigrants

0,291 ***

0,117 **

(0,033)

(0,048)

JLOWSKILLEDJMMI

-0,048

-0,047

0,002

-0,626 ***

-0,637 ***

-0,003

(0,060)

(0,060)

(0,015)

(0,072)

(0,071)

(0,026)

l_SKILLED_IMMI

0,448 ***

1,053 ***

(0,073)

(0,091)

l_SKILLED_IMMI_OECD

0,406 ***

0,026

1,329 ***

0,003

(0,094)

(0,024)

(0,107)

(0,041)

i_skilledjmmi_nonoecd

0,455 ***

0,039 **

0,951 ***

-0,005

(0,074)

(0,018)

(0,092)

(0,034)

Time dummies

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

const

-33,025 ***

-30,893 ***

-28,565 ***

-29,670 ***

-1,287

-29,460 ***

-29,364 ***

-22,677 ***

-15,144***

-0,469

(4,404)

(4,269)

(4,227)

(4,511)

(1,119)

(4,647)

(4,643)

(4,288)

(4,520)

(1,535)

Adjusted R2

0,695

0,716

0,725

0,724

0,984

0,718

0,720

0,765

0,773

0,976

Number of observations

1112

1107

1107

1107

1017

687

683

683

683

617

Notes: *** 1%, ** 5%, * 10% significant level; heteroskedasticity robust standard errors are in the parentheses.

The variable l_PCGDPDIFF is the positive difference (zero otherwise) between the sending and the receiving country.



More intriguing information

1. Constrained School Choice
2. Education Responses to Climate Change and Quality: Two Parts of the Same Agenda?
3. Correlates of Alcoholic Blackout Experience
4. The Social Context as a Determinant of Teacher Motivational Strategies in Physical Education
5. Draft of paper published in:
6. The Prohibition of the Proposed Springer-ProSiebenSat.1-Merger: How much Economics in German Merger Control?
7. Family, social security and social insurance: General remarks and the present discussion in Germany as a case study
8. The name is absent
9. Forecasting Financial Crises and Contagion in Asia using Dynamic Factor Analysis
10. Studying How E-Markets Evaluation Can Enhance Trust in Virtual Business Communities