Migrant Business Networks and FDI



Table 5 - Migrants networks and FDI - United Kingdom

Dependent variable:_____

____________________________Outward FDI____________________________

______________________________Inward FDI______________________________

Static

models

Dynamic model

Static

models

Dynamic model

Explanatory variables

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

l_TGDP

1,465 ***

0,777

0,527

0,571

-0,163

1,459 ***

1,422 ***

1,466 ***

1,849 ***

1,239 **

(0,499)

(0,559)

(0,531)

(0,562)

(0,431)

(0,479)

(0,533)

(0,509)

(0,506)

(0,584)

l_sq_GDPDIFF

-0,206 *

-0,112

-0,114

-0,119

-0,008

-0,218 **

-0,223 **

-0,199 *

-0,202 **

-0,175*

(0,112)

(0,116)

(0,110)

(0,112)

(0,078)

(0,099)

(0,103)

(0,100)

(0,096)

(0,099)

l_PCGDPDIFF

-0,151 ***

-0,161 ***

-0,123 **

-0,120 **

-0,026

0,141 ***

0,124 **

0,125 **

0,103 **

0,062

(0,049)

(0,054)

(0,052)

(0,054)

(0,045)

(0,047)

(0,052)

(0,050)

(0,048)

(0,059)

l_DIST

0,508 ***

0,474 **

0,311

0,312

-0,097

-1,227 ***

-1,152 ***

-0,971 ***

-1,055 ***

-0,580

(0,193)

(0,230)

(0,222)

(0,223)

(0,180)

(0,242)

(0,284)

(0,285)

(0,274)

(0,364)

l_OPENNESS

0,064

0,168

0,402

0,395

0,082

-2,051 ***

-1,994 ***

-1,235 **

-1,086 *

-0,291

(0,302)

(0,367)

(0,353)

(0,356)

(0,293)

(0,415)

(0,502)

(0,577)

(0,553)

(0,677)

DUMMYEU15

1,221 **

0,685

0,382

0,375

0,100

0,759 *

0,672

0,457

0,347

0,473

(0,484)

(0,526)

(0,505)

(0,508)

(0,409)

(0,441)

(0,448)

(0,440)

(0,422)

(0,508)

Dummyoecd

0,574

0,755

0,021

0,549

1,062

-1,564 **

-1,299 *

-1,287 *

13,726 **

10,376*

(0,465)

(0,565)

(0,571)

(2,214)

(1,854)

(0,663)

(0,708)

(0,680)

(5,627)

(6,046)

DUMMYLANG

1,109***

0,528

0,410

0,432

-0,111

2,031 ***

1,989 ***

1,146

1,011

0,696

(0,411)

(0,537)

(0,511)

(0,522)

(0,428)

(0,500)

(0,679)

(0,750)

(0,717)

(0,884)

DUMMYCOMMONWEALTH

-0,389

-0,822

-1,371 **

-1,407 **

-0,637

1,056 *

0,917

0,873

1,129*

0,500

(0,448)

(0,568)

(0,559)

(0,580)

(0,475)

(0,618)

(0,633)

(0,608)

(0,588)

(0,753)

Chrisshare

-0,019

-0,039

0,496

0,513

-0,452

-2,545 ***

-2,557 ***

-1,590 *

-1,632 *

-1,561

(0,459)

(0,572)

(0,561)

(0,568)

(0,455)

(0,744)

(0,810)

(0,874)

(0,834)

(0,999)

GOVERNANCE_Std

0,610

0,694

1,513

1,593

0,204

6,986 ***

6,922 ***

6,589 ***

6,877 ***

2,742

(0,894)

(1,098)

(1,062)

(1,115)

(0,920)

(1,490)

(1,558)

(1,506)

(1,441)

(1,852)

IMMIGRANTS

0,504 ***

0,012

(0,177)

(0,195)

LLOWSKILLEDJMMI

-0,779 **

-0,775 **

-0,324

-0,727 **

-0,681 **

-0,526

(0,307)

(0,309)

(0,241)

(0,305)

(0,292)

(0,334)

l_SKILLED_IMMI

1,552 ***

1,092 **

(0,372)

(0,444)

l_SKILLED_IMMI_OECD

1,513 ***

0,360

0,944 **

0,629

(0,406)

(0,340)

(0,427)

(0,504)

Lskilledjmmlnonoecd

1,575 ***

0,471

2,508***

1,769 **

(0,385)

(0,326)

(0,676)

(0,738)

Time dummies

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

const

-12,913

-10,786

-8,721

-9,484

3,981

5,493

5,429

-3,353

-22,882 *

-16,052

(8,161)

(8,723)

(8,277)

(8,873)

(7,240)

(8,924)

(10,282)

(10,560)

(12,424)

(13,548)

Adjusted R2

0,442

0,465

0,521

0,517

0,776

0,743

0,725

0,746

0,769

0,802

Number of observations

149

119

119

119

78

85

79

79

79

51

Notes: *** 1%, ** 5%, * 10% significant level; heteroskedasticity robust standard errors are in the parentheses.

The variable l_PCGDPDIFF is the positive difference (zero otherwise) between the sending and the receiving country.



More intriguing information

1. ¿Por qué se privatizan servicios en los municipios (pequeños)? Evidencia empírica sobre residuos sólidos y agua.
2. Do the Largest Firms Grow the Fastest? The Case of U.S. Dairies
3. ROBUST CLASSIFICATION WITH CONTEXT-SENSITIVE FEATURES
4. The name is absent
5. The name is absent
6. The name is absent
7. The name is absent
8. The name is absent
9. 03-01 "Read My Lips: More New Tax Cuts - The Distributional Impacts of Repealing Dividend Taxation"
10. Regulation of the Electricity Industry in Bolivia: Its Impact on Access to the Poor, Prices and Quality