Table 10. Simulating the impact on preferences of changing RHS variables
A. Equation (4), Table 4 (continued)
First Difference: Impact of high-skill when GDP per capita = $5000
Change in Probability ∣ Mean Std. Dev. [95% Conf. Interval]
dPr(protect==1) ∣ |
.0026699 |
.0012682 |
.0001494 |
.0052034 |
dPr(protect==2) ∣ |
.0103182 |
.004741 |
.0006345 |
.0194862 |
dPr(protect==3) ∣ |
.0105686 |
.0047525 |
.0006773 |
.0195221 |
dPr(protect==4) ∣ |
-.0006657 |
.0010204 |
-.0030787 |
.0010019 |
dPr(protect==5) ∣ |
-.0228909 |
.0102694 |
-.0420419 |
-.0014672 |
First Difference: Impact of high-skill when GDP per capita = $15000
Change in Probability ∣ Mean Std. Dev. [95% Conf. Interval]
dPr(protect==1) ∣ |
.0072067 |
.0009877 |
.0053957 |
.0093273 |
dPr(protect==2) ∣ |
.0263177 |
.002958 |
.0206797 |
.0324438 |
dPr(protect==3) ∣ |
.025299 |
.0026539 |
.0202207 |
.0305039 |
dPr(protect==4) ∣ |
-.0041574 |
.0021097 |
-.0083383 |
-.0003163 |
dPr(protect==5) ∣ |
-.0546661 |
.0057117 |
-.0655149 |
-.0436477 |
First Difference: Impact of high-skill when GDP per capita = $25000
Change in Probability ∣ Mean |
Std. Dev. |
[95% Conf. Interval] |
dPr(protect==1) ∣ .0127708 |
.0020405 |
.0090668 .0170057 .0330583 .0541702 .0312127 .0462664 -.019564 -.0036387 -.1006383 -.0677581 |
First Difference: Impact of national mobility | ||
Change in Probability ∣ Mean |
Std. Dev. |
[95% Conf. Interval] |
dPr(protect==1) ∣ .0001647 dPr(protect==4) ∣ -3.03e-06 dPr(protect==5) ∣ -.0015247 |
.000602 .002618 .0002122 |
-.0009862 .0013277 -.0039293 .0052194 -.004298 .0055967 -.0004342 .0004178 -.0121468 .0094165 |
First Difference: Impact of international mobility | ||
Change in Probability ∣ Mean |
Std. Dev. |
[95% Conf. Interval] |
dPr(protect==1) ∣ .0049903 dPr(protect==2) ∣ .0187507 dPr(protect==3) ∣ .0185949 dPr(protect==4) ∣ -.0021242 dPr(protect==5)∣ -.0402116 |
.0009142 |
.0032012 .0068706 .0125397 .0248353 -.0053734 .0007657 -.0528894 -.0271189 |
41
More intriguing information
1. Developmental changes in the theta response system: a single sweep analysis2. SOME ISSUES CONCERNING SPECIFICATION AND INTERPRETATION OF OUTDOOR RECREATION DEMAND MODELS
3. A Dynamic Model of Conflict and Cooperation
4. Tax systems and tax reforms in Europe: Rationale and open issue for more radical reforms
5. Intertemporal Risk Management Decisions of Farmers under Preference, Market, and Policy Dynamics
6. How we might be able to understand the brain
7. The name is absent
8. Testing Hypotheses in an I(2) Model with Applications to the Persistent Long Swings in the Dmk/$ Rate
9. The name is absent
10. The resources and strategies that 10-11 year old boys use to construct masculinities in the school setting