Now we start the proof of (71) . Let si2,T = E (ι0Qi,T)2 and SN2,T = Pi si2,T.
Under Assumption 11, we have
2
si,T
E (ι0Qi,T)2
ι0E h(EFw (ui
EFw u»)2) DtWiWj'iDt∖ ι
σ2uE [ι0Dtwiw0Dtι].
By Part (a),
N X ι0DτWJiWJ00Dtι → ι0Ξι > 0,
i
as (N, T →∞) . By Part (b),
sup sup E ∣∣ι0DτW7ik2 1 {∣∣ι0Dτw»|| >M} → 0,
N,T 1≤i≤N
as M →∞, and so ∣ι0DTwJi ∣2 is uniformly integrable in N,T. Then, by Vitali’s
lemma, it follows that
1 2 20
NSN,T → σuι ξ1 > 0,
as (N,T →∞) . Thus, for our required result of (71), it is sufficient to show
X 1QT ⇒ N (0,1),
(72)
SN,T
i,
as (N, T → ∞). Let Pi,Nτ = l-sQ*4 . Note that, under Assumption 9, E (P»,nt) =
0 and Pi EPi2,N T =1. According to Theorem 2 of Phillips and Moon (1999),
the weak convergence in (72) follows if we can show that
^2EPi2NT1 ©IPi2NT I > ε} → 0 for all ε > 0,
i
(73)
as (N, T →∞). Since
the Lindeberg-Feller condition (73) follows, and we have all the desired results.
¥
sup sup E ∣Qi,T ∣
N,T 1≤i≤N
≤ ∣ι∣8 sup sup E ∣
DtWik4 (Efw (и.
N,T 1≤i≤N
≤ κU sup sup E ∣∣DtW7i∣4 < ∞,
N,T 1≤i≤N
EFwui)4
Part (d)
48
More intriguing information
1. Dynamiques des Entreprises Agroalimentaires (EAA) du Languedoc-Roussillon : évolutions 1998-2003. Programme de recherche PSDR 2001-2006 financé par l'Inra et la Région Languedoc-Roussillon2. Fertility in Developing Countries
3. Experience, Innovation and Productivity - Empirical Evidence from Italy's Slowdown
4. The name is absent
5. Wettbewerbs- und Industriepolitik - EU-Integration als Dritter Weg?
6. The name is absent
7. Optimal Tax Policy when Firms are Internationally Mobile
8. The name is absent
9. Financial Markets and International Risk Sharing
10. The name is absent