Since Vi is independent of wi, we have
X1 X Dt WiVi
√N
i
2
=E
-1= X DtτiiVi
√N
i
σTvtr ^]1 X EDTwiw'0DT
≤ σv sup sup E ∖∖DtWik2 → 0,
T N,T 1≤i≤N
as (N, T →∞) , where the last convergence holds because Part (b) warrants
sup sup E ∣∣Dtwi∣∣2 < ∞∙ ¥
N,T 1≤i≤N
Proof of Lemma 2
Part (a)
By definition, we have
11
N^ √T^ GXχT (xit xi) (xit xi) GxT
— ^NX ʌTXGxT (xit Eixit + Eixit Eixi + Eixi xi)
× (xit Eixit + Eixit Eixi + Eixi xi) GxT,
— NXTX (IIIι,iT +III2,iT+III3,iT)(III1,iT +III2,iT+III3,iT)0, say.
First, we show that
N X T X IIIι,iτ IIII ,iT
it
1 1 D1T (x1,it - Ex1,it) D1T (x1,it - Ex1,it) 0
— N∑T x2,it - Ex2,it JI x2,it - Ex2,it J
i t x3,it - Ex3,it x3,it - Ex3,it
/ 0 0 0 ∖
→ p 0 Φ22 Φ23 ∙ (74)
0 Φ023 Φ33
For this, set
1 D1T (x1,it - Ex1,it)
ID1T (x1,it - Ex1,it)
x2,it - Ex2,it
x3,it - Ex3,it
QiT — T X^? I x2,it - Ex2,it
t x3,it - Ex3,it
49