Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test



Notice that since ∣∣Z⅞τ (E⅛^χ3jitEx3jit) ∣∣4 ≤ τ (r)4 G (¾)4 by Assumption
6(iv), we have sup,
∣∣Z⅞feT (A¾y.⅛fe,i - Ex3kti) ∣∣4 ≤ (ʃθɪ τ (r)4 dr) supiG(¾)4
for
к = 1,2, and 3. Therefore, by Lemma 10, we have

E KD3kτ (Ej^ix3k,i — Ex3k1i} K


(uniformly in i)



< ∞, for к = 1, 2, 3,


where τ3ι (r) = 0. So,

supE ∖∖D (Eτz.x3,i - Ex3ji) ∣∣4 < ∞.               (67)

Similarly, it follows that

sup sup E ∣∣Z⅛τ (E∏sx3 - E⅛)∣∣4 < ∞∙            (68)

N,T l<i<N


In addition, notice that

sup sup ∣∣Z⅛τ (Ex31i - Ex3)Il
N,Tl<i<N

sup sup


N,T l<i<N


(D33τ {Ex33tι — Ex33)
D3∙2τ (Ex321i — Ex32) — H32μg32i
D33τ {Ex33yι — Ex33) — H33μg33.


(69)


+ sup sup

N 3<i<N


0

-^32 At332

-^33 At333


By Assumption 6(v), as T → ∞,


sup sup


N 3<i<N


(D33τ (Ex33g. — Ex33)
D3,2τ
(¾2,i — Ex32) — H3g32 .

D33τ (Ex33ji — Ex33) — H33μg33 .


sup sup


D33τ {Ex33,i — Ex33j)            ''

D32τ (Ex32,i — Ex32j) — H32g32 i At3323J

D33τ (Ex33ιi — Ex33j) — H33 μg33 i — μ933 j) J


sup
i,j


f           D33τ (Ex33ji — Ex33j)

D32τ (Ex32,i — Ex32j) — H32 μg32 i At332i3

D33τ (Ex33,i — Ex33j) — H33g33 i — μ933 j


46




More intriguing information

1. Fortschritte bei der Exportorientierung von Dienstleistungsunternehmen
2. Modeling industrial location decisions in U.S. counties
3. ‘Goodwill is not enough’
4. The Impact of Optimal Tariffs and Taxes on Agglomeration
5. Examining Variations of Prominent Features in Genre Classification
6. Determinants of U.S. Textile and Apparel Import Trade
7. The name is absent
8. The purpose of this paper is to report on the 2008 inaugural Equal Opportunities Conference held at the University of East Anglia, Norwich
9. The name is absent
10. Correlates of Alcoholic Blackout Experience