eχp(∕3 ΣZj+1 Mi) ʃ ∙∙ ʃ drj+1drj+2..drm
-----7---------------------------------x----------------------------, (4.23)
«Ф (∑ZwP<fr<) - W∙(r∙)l) IES1 ∆<wl(r<. ■•<«)
and
β j exp(∕3∑jιJμi)f..f dr1dr2..drj^1
-----7—:------------------------χ----:--------------------, (4.24)
θxP (∑i=l1[βi(ri) - 0vfxt(ri)∖) Ui=! ^i'i+1'>(ri,ri+1)
where,
r,M 1VV /'n.e4r√*n9-[{∕¾'s(γi)}1a. 6βA^∙ δβAεx^
{ '⅛⅜M, ------ ' ~ ⅛ffsW^ ^ *<'
(4.25)
The ,s relate the chemical potential of the segment ‘j ’ to the environment experi-
enced by segments connected to ‘j’ through site ‘A’. Such sharing of information along
a molecule is essential to modeling the structure of molecules with different segment
types such as copolymers. Note that we can drop the K exp(βε0) in the expressions
for ∆(z,j),s since they cancel out with similar terms in the bulk μβs. The multiple
integrals are evaluated as a recurrence,
∕ιj(r) = / ∕u-ι(r')exp[jO^ι(r')-∕3y-Kr')]Δ^-14)(r',r)⅛z, (4.26)
(4.27)
ʃi,i(r) = 1>
93