The name is absent



131

A.4 Derivation of the solution for a one-dimensional infinite cable

Starting with the differential equation

V + ^∂v 1 2v _ .
rm + ∂t ra ∂x2 ^l

to find the impulse response (Green’s function) use an impulsive input i in space and time

V     ∂v   1 2v

-+c^~-^=δ^δ^
rm    ∂t ra OX2

Take the Fourier transform with respect to space

( V     ∂v 1 2v 1

I rm     ∂t ra ∂x2 J

V ∂v 1        2 1          1

— + C—----(jω) V— = δ(t) .—

rm ∂t ra         ra √27Γ

∂υ / 1

∂t rm


,2


1

z


Solve first order ODE with respect to time by finding integrating factor μ, multiplying both
sides by
μ and integrating

Z1 Z 1 ω2
μ = exp — — + — i
C τm τa /

1

Tm

,2

1     / X Z 1 ʌ Z ω2

u  ---=u{t) exp   —11 exp ——t

CV2^ Crrn ) Cra

Take the inverse Fourier transform

/ ω2


raC    / Cra 2

---exp —x

2t      4t

according to Wolfram Mathematica, so...

'v


∖ Z Cra 9
~t)exp("^4Γx



More intriguing information

1. IMPROVING THE UNIVERSITY'S PERFORMANCE IN PUBLIC POLICY EDUCATION
2. Brauchen wir ein Konjunkturprogramm?: Kommentar
3. The name is absent
4. The name is absent
5. The name is absent
6. References
7. AGRICULTURAL TRADE IN THE URUGUAY ROUND: INTO FINAL BATTLE
8. CONSUMER ACCEPTANCE OF GENETICALLY MODIFIED FOODS
9. FDI Implications of Recent European Court of Justice Decision on Corporation Tax Matters
10. The Cost of Food Safety Technologies in the Meat and Poultry Industries.