The name is absent



131

A.4 Derivation of the solution for a one-dimensional infinite cable

Starting with the differential equation

V + ^∂v 1 2v _ .
rm + ∂t ra ∂x2 ^l

to find the impulse response (Green’s function) use an impulsive input i in space and time

V     ∂v   1 2v

-+c^~-^=δ^δ^
rm    ∂t ra OX2

Take the Fourier transform with respect to space

( V     ∂v 1 2v 1

I rm     ∂t ra ∂x2 J

V ∂v 1        2 1          1

— + C—----(jω) V— = δ(t) .—

rm ∂t ra         ra √27Γ

∂υ / 1

∂t rm


,2


1

z


Solve first order ODE with respect to time by finding integrating factor μ, multiplying both
sides by
μ and integrating

Z1 Z 1 ω2
μ = exp — — + — i
C τm τa /

1

Tm

,2

1     / X Z 1 ʌ Z ω2

u  ---=u{t) exp   —11 exp ——t

CV2^ Crrn ) Cra

Take the inverse Fourier transform

/ ω2


raC    / Cra 2

---exp —x

2t      4t

according to Wolfram Mathematica, so...

'v


∖ Z Cra 9
~t)exp("^4Γx



More intriguing information

1. Changing spatial planning systems and the role of the regional government level; Comparing the Netherlands, Flanders and England
2. LOCAL CONTROL AND IMPROVEMENT OF COMMUNITY SERVICE
3. Revisiting The Bell Curve Debate Regarding the Effects of Cognitive Ability on Wages
4. ALTERNATIVE TRADE POLICIES
5. Wettbewerbs- und Industriepolitik - EU-Integration als Dritter Weg?
6. DISCUSSION: POLICY CONSIDERATIONS OF EMERGING INFORMATION TECHNOLOGIES
7. ‘I’m so much more myself now, coming back to work’ - working class mothers, paid work and childcare.
8. Plasmid-Encoded Multidrug Resistance of Salmonella typhi and some Enteric Bacteria in and around Kolkata, India: A Preliminary Study
9. An Attempt to 2
10. The name is absent