References
1. Yang, Y., K.M. Mayer, and J.H. Hafner, Quantitative membrane electrostatics
with the atomic force microscope. Biophysical Journal, 2007. 92(6): p. 1966-
1974.
2. Cevc, G., Membrane Electrostatics. Biochimica Et Biophysica Acta, 1990.
1031(3): p. 311-382.
3. MacKinnon, R., Voltage sensor meets lipid membrane. Science, 2004. 306(5700):
p. 1304-1305.
4. McLaughlin, S. and D. Murray, Plasma membrane phosphoinositide organization
by protein electrostatics. Nature, 2005. 438(7068): p. 605-611.
5. Clarke, R.J., The dipole potential ofphospholipid membranes and methods for its
detection. Advances in Colloid and Interface Science, 2001. 89: p. 263-281.
6. Voglino, L., T.J. McIntosh, and S.A. Simon, Modulation of the binding of signal
peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
Biochemistry, 1998. 37(35): p. 12241-12252.
7. Cladera, J. and P. O'Shea, Intramembrane molecular dipoles affect the membrane
insertion and folding of a model amphiphilic peptide. Biophysical Journal, 1998.
74(5): p. 2434-2442.
8. Cafiso, D.S., Dipole potentials and spontaneous curvature: membrane properties
that could mediate anesthesia. Toxicology Letters, 1998.101: p. 431-439.
9. Winiski, A.P., et al., An Experimental Test of the Discreteness-Of-Charge Effect in
Positive and Negative Lipid Bilayers. Biochemistry, 1986. 25(25): p. 8206-8214.
51