(35)
For generations s = 2, . . . , T the log-linearized budget equations (5) are:
ks+1 ,j^ts+11,j + θms+1 ,jmt+1,j - (1 - δ) ksj fcs,j - ms,jmssj + (τ0ysj + msj )πt
= (1 — τ0 ) ys,j y s,j + trtrt + ΩΩ t — cs,j c st,j,
j = 1, . . . , ne, s = 2, . . . ,T. (36)
For generations s = T + 1, . . . , T + T R - 1 they are:
ks+1 ,jk S .l∣l ,j + πms+1,j m t+1,j — (1 — δ ) ks,jk s,j — ms,j m S,j + ( τ 0ys,j + ms,j + pens ) π t
= (1 — τ0 ) ys,j y s,j + trtrt + ΩΩ t — cs,j ^ s,j,
j = 1, . . . , ne, s = 2, . . . ,T.
(37)
The Euler equations (7) and (8) yield:
^s+1,j ^s,j β λ + ,j / 0 00 s+1 ,j∖
λt +1 — λt — βr λs,j τ + τ y πt +1
λs+1,j λs+1,j
= β''λsj τ 00ys+1 ,jy t+ ,j — βl' λs,j(1 — τ 0 )r t+1, (38)
β λs+1,j β λs+1,j
∏-λt+'1 j — λsj — I1 + (1 — β-P — Y)(1 — σ) — ɪ]j πt+1
+ [(1 — γ)(1 — σ) — 1] (1 — βλ+j) rmS÷11'j
βλs +1j s+u
= —Y <1 — σ ψ — ∏-C+^j ■
j = 1, . . . , ne, s = 1, . . . ,T + TR — 1. (39)
Note that in the equations for s = T + TR — 1 we must replace ΛT+T ,j by the right
hand side of (27) for t + 1 and s = T + TR. The remaining two equations are given by
the New Keynesian Phillips curve equation (17),
,ɔʌ ʌ I (1 — φ )(1 — βφ )
βπ t+1 — π t + g-------g t = 0, (40)
φ
and the log-linearized definition of the aggregate beginning-of-period real stock of
money mt := Mt/Pt-1. Together with equation (18) this definition implies:
m t+1 — m t + ∏ t = θ t. (41)
30