Spectral calibration of exponential Lévy Models [1]



16


Denis Belomestny and Markus Reiβ


An application of Proposition 1(d) therefore shows for σ > 0


∞  I E[ O)( x ) -O ( x )] I d x 6 e-A

-∞


+ 32 + 2C02 + 4C2∆e-(A-)


2.


In the case σ = 0 we consider the index jt with Xj-- 1 6 γT < xj- and
face an additional error estimated by


χxi*

xxi--1


IE[O)(x) - O(x)]I dx 6


xi-

k(O

xi--1


β0),∣∣L∞ I


2(x - xj--1)(xj- - x)
xj- - xj--1


dx


6 (O - β0)0L (xj- - xj--1)2

We infer that this error term is also of order 2 and thus does not enlarge
the convergence rate.

6.3. Upper bound for σ2

The rate for σ2 follows once the general risk estimate

E[σ2 - σ212] . U-2(s+3) + E(2U2)U-1 ε2 + E(2maxU2)2U4ε4 (32)
has been shown for
U . -1 uniformly over Gs (R, σmax ), since the explicit
choice of
U renders the second and third term asymptotically negligible.

Consider in the definition (12) of ψ separately the linearisation L, ne-
glecting the stabilisation by
κ, and the remainder term R:

L(u) := T-1 φτ(u - i)-1(u - i)uF(O) - O)(u),          (33)

R(u) := ψ)(u) - ψ(u) - L(u).                              (34)

When neglecting the remainder term, we may view ψ)(u) as observation
of
ψ(u) in additive noise, whose intensity grows like φT(u-i) -11(u-i)u ~
u2 e2 u2 for IuI → ∞. This heteroskedasticity reflects the degree of ill-
posedness of the estimation problem.

Lemma 1. For all u R the remainder term satisfies

R(u) 6 T-1κ(u)-2(u4 +u2)F(O) - O)(u)2.

Proof. Let us set ⅛)T(u - i) := 1 - u(u - i)FO(u) which equals eTψ(u) if
-⅛

⅛)T(u - i) Iκ(u). Using eTψ(u) κ(u), u R, we obtain by a second-
order expansion of the logarithm

(u) - log(φT(u - i))) - φT(u - i)-1(eTψ(u) - φT(u - i))

6 1 κ(u)-2 eTψ(u) - φT(u - i) 2.

This gives the result whenever ⅛)T(u - i)κ(u). For the other values u
the inequalities ⅛)T(u - i) < κ(u) 6 φT(u - i)/2 imply 1 6 ⅛)T(u - i) -
φ
T(u - i) κ(u)-1 and hence

φT(u - i)-1(eTψ(u) - ⅛)T(u - i)) 6 2κ(u)-21⅛)T(u - i) - φT(u - i)2



More intriguing information

1. National curriculum assessment: how to make it better
2. The name is absent
3. The name is absent
4. The name is absent
5. Graphical Data Representation in Bankruptcy Analysis
6. The name is absent
7. Reputations, Market Structure, and the Choice of Quality Assurance Systems in the Food Industry
8. The problem of anglophone squint
9. Epistemology and conceptual resources for the development of learning technologies
10. A Rare Presentation of Crohn's Disease