Spectral calibration of exponential Levy models ??
17
= 1 κ(u)-2(u4 + u2)F(O) - O)(u)|2.
Together with the previous result this gives for all u ∈ R the assertion of
the lemma.
ut
We shall frequently use the following norm bounds for the B-splines (bk),
which follow from kbk k∞ = 1 and |xk+1
xk-1 | 6 2∆:
∣Fbk∣∣l2 = 2∏kb∖∖bkkb2 6 (4π∆)1 /2, ∣∣Fbk∣∣∞ 6 \\bk\\Lɪ 6 2∆. (35)
We decompose σ2 in terms of L and R from (33) and (34):
U
σ2 = /
-U
2
-2(u2 — 1) + γ + Re(Fμ(u)) — λ + Re(L(u) + R(u))) wjU(u) du
U
= σ2 + / Re (Fμ(u) + L(u) + R(u)) wσ (u)du,
-U
which yields
(36)
∣ U ∣2 ∣ U ∣2
E[ ∣σ2 — σ212] 6 3∣∕ F μ ( u ) wU ( u )d u ∣ +3 E ∣/ L ( u ) wU ( u )d u ∣
U2
+ 3 Eh∣∣ R(u)wσU (u) du∣∣ i.
Let us consider the three terms in the sum separately. The nuisance of
Fμ causes a deterministic error which can be bounded using ( iu ) sFμ (u ) =
F μ (s )(u) and the Plancherel isometry by:
∣/ Fμ(u)wσ(u)du∣ = 2π∣ f μ(s)(x)F-1(wU(u)/(iu)s)(x)dx∣
-U -∞
6 U-(s+3) kμ(s) ∣U∣∣F(w~σ(u)/us) ∣∣b 1.
(37)
The linear error term can be split into a bias and a variance part (Var[Z] :=
E[|Z - E[Z]|2]):
U 2U
Eh∣∣Z-UL(u)wσU(u)du∣∣ i = ∣∣Z-U
- i) E[F (O) - O)(u)]wσU (u)
ψτ ( u — i )
2
d u∣
+ Varh Γu u(u — i)√C>lu) w(u) dui =: Lb + L.
-J-U Vt ( u — i ) -l
The bias term is easily bounded by Proposition 2, using the uniform bound
on U s+3 wσU (u)/us :
U
|Lb| 6 ∣∣F(Oi-O)IU / ∖φτ(u — i)∣-1(u4 + u2)1 /2wσ(u)|du
-U
U2
< ∆2U-(s+3) eτɪu +2tkμkL1 |u|s+2 du.
-U