20
Denis Belomestny and Markus Reiβ
6.5. Upper bound for μ
The assertion follows as soon as the following Gs (R, σmax)-uniform risk
bound for general U holds:
E h ∞ ∣μ(x) - μ(x)∣2 dxi . U-2s + E(Tσ2U2)U5ε2 + E(2Tσ2maxU2)U9ε4.
-∞
(44)
The bias in estimating μ due to the cutoff at U can be estimated by
1 F μ ( u )(1
-∞
-1[-U,U])|2 du 6 U-2s
∞ |u|2s∣Fμ(u)∣2 du = U-2skμ(s)k2 2.
-∞
(45)
The variance term can be split up according to the different risk contribu-
tions. For u ∈ [-U, U] we obtain
E[IF(μ - μ)(u)∣2]
6 4 E[∣ψ(u) — ψ(u)) 12] + 4(u2 + 1)2 E[∣σ2 — σ212]
+ 4( u2 + 1) E[ ∣γ — γ∣2 ] + 4 E[ ∣λ — λ∣2 ]
. E[∣L(u) 12] + E[∣R(u) 12] + U4 E[∣σ2 — σ212] + U2 E[∣^ — γ∣2] + E[∣λ — λ∣2]
. E[|L(u)|2] +E[|R(u)|2]+U-2(s+1) + E(Tσ2U2)U3ε2 +E(Tσm2axU2)2U8ε4.
In analogy to the previous estimates for σ2 we find
E[∣L(u)12] 6∖φτ(u
. eTσ2u
2u
i ) ∣-2( u4 + u 2)( kF ( O — Oi ) k ∞ + Var[ FO)( u )])
^( ∆4 + ∆2 kJk22 ´ .
With a look at Lemma 1 we estimate the remainder by
E[∣R(u)12] 6 16κ(u)-4(u4 + u2)2 E[∣F(Oi — O)(u)∣4 + ∣F(O) — Oi)(u)14]
. e2Tσmaxu u8(∆8 + ∆4∣∣tf∣∣42´ .
The Plancherel identity and these estimates yield together (44) via
E E[∣^(χ) — μ(χ) 12] dχ . U
-∞
2s +E(Tσ2U2)U5ε2 +E(2Tσm2axU2)U9ε4
+ E(Tσ2U2)U4ε2 +E(Tσm2axU2)2U9ε4
2s +E(σ2U2)U5ε2 +E(2Tσm2axU2)U9ε4.
7. Proof of the lower bounds
We follow the usual Bayes prior technique, see e.g. Korostelev and Tsybakov
(1993), and perturb a fixed Levy triplet T0 = (0,γ0,ν0) in the interior of
Gs (R, σmax) such that the perturbations remain in Gs(R, σmax).