Spectral calibration of exponential Lévy Models [1]



20


Denis Belomestny and Markus Reiβ

6.5. Upper bound for μ


The assertion follows as soon as the following Gs (R, σmax)-uniform risk
bound for general
U holds:

E h μ(x) - μ(x)2 dxi . U-2s + E(2U2)U5ε2 + E(22maxU2)U9ε4.

-∞

(44)


The bias in estimating μ due to the cutoff at U can be estimated by


1  F μ ( u )(1

-∞


-1[-U,U])|2 du 6 U-2s


|u|2sFμ(u)2 du = U-2skμ(s)k2 2.

-∞

(45)


The variance term can be split up according to the different risk contribu-
tions. For
u [-U, U] we obtain


E[IF(μ - μ)(u)2]

6 4 E[ψ(u) ψ(u)) 12] + 4(u2 + 1)2 E[σ2 σ212]

+ 4( u2 + 1) E[ γ γ2 ] + 4 E[ λ λ2 ]

. E[L(u) 12] + E[R(u) 12] + U4 E[σ2 σ212] + U2 E[^ γ2] + E[λ λ2]

. E[|L(u)|2] +E[|R(u)|2]+U-2(s+1) + E(2U2)U3ε2 +E(m2axU2)2U8ε4.


In analogy to the previous estimates for σ2 we find


E[L(u)12] 6φτ(u
. e2u


2u


i ) -2( u4 + u 2)( kF ( O — Oi ) k + Var[ FO)( u )])
^(
4 + 2 kJk22 ´ .


With a look at Lemma 1 we estimate the remainder by


E[R(u)12] 6 16κ(u)-4(u4 + u2)2 E[F(Oi — O)(u)4 + F(O) — Oi)(u)14]
. e2Tσmaxu u8(8 + 4∣∣tf∣∣42´ .


The Plancherel identity and these estimates yield together (44) via


E E[^(χ) μ(χ) 12] . U

-∞


2s +E(2U2)U5ε2 +E(2m2axU2)U9ε4


+ E(2U2)U4ε2 +E(m2axU2)2U9ε4


2s +E(σ2U2)U5ε2 +E(2m2axU2)U9ε4.


7. Proof of the lower bounds

We follow the usual Bayes prior technique, see e.g. Korostelev and Tsybakov
(1993), and perturb a fixed Levy triplet
T0 = (000) in the interior of
Gs (R, σmax) such that the perturbations remain in Gs(R, σmax).




More intriguing information

1. Effects of red light and loud noise on the rate at which monkeys sample the sensory environment
2. The name is absent
3. SOME ISSUES CONCERNING SPECIFICATION AND INTERPRETATION OF OUTDOOR RECREATION DEMAND MODELS
4. CONSUMER PERCEPTION ON ALTERNATIVE POULTRY
5. AMINO ACIDS SEQUENCE ANALYSIS ON COLLAGEN
6. The name is absent
7. The name is absent
8. How we might be able to understand the brain
9. Innovation Trajectories in Honduras’ Coffee Value Chain. Public and Private Influence on the Use of New Knowledge and Technology among Coffee Growers
10. Transgression et Contestation Dans Ie conte diderotien. Pierre Hartmann Strasbourg