Spectral calibration of exponential Lévy Models [1]



20


Denis Belomestny and Markus Reiβ

6.5. Upper bound for μ


The assertion follows as soon as the following Gs (R, σmax)-uniform risk
bound for general
U holds:

E h μ(x) - μ(x)2 dxi . U-2s + E(2U2)U5ε2 + E(22maxU2)U9ε4.

-∞

(44)


The bias in estimating μ due to the cutoff at U can be estimated by


1  F μ ( u )(1

-∞


-1[-U,U])|2 du 6 U-2s


|u|2sFμ(u)2 du = U-2skμ(s)k2 2.

-∞

(45)


The variance term can be split up according to the different risk contribu-
tions. For
u [-U, U] we obtain


E[IF(μ - μ)(u)2]

6 4 E[ψ(u) ψ(u)) 12] + 4(u2 + 1)2 E[σ2 σ212]

+ 4( u2 + 1) E[ γ γ2 ] + 4 E[ λ λ2 ]

. E[L(u) 12] + E[R(u) 12] + U4 E[σ2 σ212] + U2 E[^ γ2] + E[λ λ2]

. E[|L(u)|2] +E[|R(u)|2]+U-2(s+1) + E(2U2)U3ε2 +E(m2axU2)2U8ε4.


In analogy to the previous estimates for σ2 we find


E[L(u)12] 6φτ(u
. e2u


2u


i ) -2( u4 + u 2)( kF ( O — Oi ) k + Var[ FO)( u )])
^(
4 + 2 kJk22 ´ .


With a look at Lemma 1 we estimate the remainder by


E[R(u)12] 6 16κ(u)-4(u4 + u2)2 E[F(Oi — O)(u)4 + F(O) — Oi)(u)14]
. e2Tσmaxu u8(8 + 4∣∣tf∣∣42´ .


The Plancherel identity and these estimates yield together (44) via


E E[^(χ) μ(χ) 12] . U

-∞


2s +E(2U2)U5ε2 +E(2m2axU2)U9ε4


+ E(2U2)U4ε2 +E(m2axU2)2U9ε4


2s +E(σ2U2)U5ε2 +E(2m2axU2)U9ε4.


7. Proof of the lower bounds

We follow the usual Bayes prior technique, see e.g. Korostelev and Tsybakov
(1993), and perturb a fixed Levy triplet
T0 = (000) in the interior of
Gs (R, σmax) such that the perturbations remain in Gs(R, σmax).




More intriguing information

1. AJAE Appendix: Willingness to Pay Versus Expected Consumption Value in Vickrey Auctions for New Experience Goods
2. Consciousness, cognition, and the hierarchy of context: extending the global neuronal workspace model
3. Testing for One-Factor Models versus Stochastic Volatility Models
4. Should informal sector be subsidised?
5. CURRENT CHALLENGES FOR AGRICULTURAL POLICY
6. How does an infant acquire the ability of joint attention?: A Constructive Approach
7. The name is absent
8. The name is absent
9. SOCIOECONOMIC TRENDS CHANGING RURAL AMERICA
10. The name is absent