We split the right-end side in different pieces, to begin with net worth.
(1 - q) [yYβ - [1 - (1 - q)«]]
Yy β
Yy
« (1 - q )
+1
βγγ + [(1 - q )«
1]
(1 - q ) [yY β - [1 - (1 - q ) «
NW +
« (1 - q )
NW
(74)
The value of Zt is:
[1 - γγ ] [βγγ - 1] NW
Yy β
(1 - q){yYβ - [1 - (1 - q)«]}
Yy β
Yy 1 - (1 - q ) «
1 - «(1 - q) (1 - q) [yYβ - [1 - (1 - q)«]]
⅛]
Zt +
,__1 - (1 - q )«_________E [1 z ]
(1 - q)[yYβ - [1 - (1 - q)«]] ∣-α t+1-∣
-1E [1 ] Zt + 1 (1 q ) « E [1 Zt+ι].
β L a J γγ β L α J
The value of Xt is:
(1 - q) [yYβ - [1 - (1 - q)«]]
Yy β
_ Yy__Yy β______χ +
1 - «(1 - q) [yYβ - [1 - (1 - q)«]] t-1
I γγβ V, I 1 V. —
[yYβ - [1 - (1 - q)«]] 1 - «(1 - q)
(1 - q)( Yy β - 1)
Yy β
Xt +
(1 - q ) Yy ( D
1 - «(1 - q)( t
The final result is the following:
e[Ft+i] - [—- + γγ] Ft + -Ft~ι =
Lγγβ J β
[1 - Yy ] [βYγ - 1]
-1E[ 1] Zt + 1 - (1 - q>« E[t Zt +1] + (1 - q)(γγβ - 1> Xt +
β L α J γγ β La J γγ β
Yy β
(1 - q ) Yy
[1 - «(1 - q)]
NW +
(eD - et ).
(75)
Alternative solution of the system
E [ Ft +ι] =
1 - (1 - q)* , (1 - q) [yYβ - [1 - (1 - q)«]] rι ,
γγ β -t +---------Yββ---------Dt +
+βγγ + [(1 - q ) «
Yy β
1 NW + (1 - q) Xt + 1 (1 q) « E [1 Zt +1].
Yy β La J
(76)
25