Monopolistic Pricing in the Banking Industry: a Dynamic Model



Since we know that Xt +ι = Xt + eD+1 — eB+1, we can write:

- γYβκ- q) + - κ- q)] χ + χt + ⅜1 - ⅜1

YyβI - κ(1 - q)]        t ɪ - к(1 - q)

And, sinceEt [et-1] = 0:

-Yyβκ(1 - q) - I - κ(1 - q)] + γγβ χ

Yyβ- к- q)]             11

It can be simplified as:

Yy β - ɪ
Yy β


Xt.


The other intercept term is - -γ~~1E [ɪZt-ɪ]. We can finally write the value of Dt as:

E[Dt] - [ɪ + γγ ] Dt + ɪDt-1 =      Xt - ~^~E[ ɪ Zt+11.

(83)


(84)


(85)


Lγγ β     J β          γγ β       γγ β La    J

Deposits

We can obtain the value of Dt from:

E[Dt +1] - [ɪ + γγ ] Dt + ɪDt-1 = γγβ-1 Xt - E [ ɪ Zt+11.
L
γγ β     J β          γγ β       γγ β La    J

The solution is given by:

∞                        ∞ -Ixi

Dt+j+1 = γγβDt+j + βYY ∑ (YY) Et+i [   O1 ] - βγγa- Yy)C +

- Y-1 ∑ ( γY ) lEt-+i [ Xt+j+i+1],

Under the assumption that interest rates follow a random walk process, we can for simplicity
assume that deterministic component of the rates remain constant and treat the values of the rates
at time
t and t + ɪ that enter in the solution as constants. In this case the result is the following:

Dt+j +1 = γγΓβDt+j - βγγa- γγ) [(ɪ - K)(γγβ - H) + - q)κH][rB+j+1 + COV (rB, ɪ)] +

- βγγa- γγ) K(rR+ jq - rD+ j) + γγβ(1 - γγ) (g3rD+j - g4rB+j) - βγγa- γγ) C +

- jγγβ - ɪ)K COV (Ld, ɪ ); (86)
βγY- γY )           a

it can finally be simplified as:

ɪ         κ[(ɪ- d)(γγβ- h) + (1 - q)kH]+ (γγβ- ɪ)ag4h b

Dt + +' = γγβ Dt + j +                        a T)                   r+ ' +

κ R     κ2 + a(γγβ - ɪ)g3 d  i4 (βγγ - ɪ) [Z - a] - κ^}

~rrt q+ +

βγγa(γγ - ɪ)   + j      βγγa(γγ - ɪ)    + j         βγγa(γγ - ɪ)

+ d----K----U [(ɪ - k)(Yyβ - ɪ) + (ɪ - q)K] COV(rB, ɪ) - (γγβ ɪ)K COV(Ld, ɪ ). (87)

βγγa(γγ - ɪ) L ∖ b/                     a β a/   βγγ(γγ - ɪ) ∖    a/

27



More intriguing information

1. SOME ISSUES IN LAND TENURE, OWNERSHIP AND CONTROL IN DISPERSED VS. CONCENTRATED AGRICULTURE
2. The name is absent
3. Top-Down Mass Analysis of Protein Tyrosine Nitration: Comparison of Electron Capture Dissociation with “Slow-Heating” Tandem Mass Spectrometry Methods
4. On the estimation of hospital cost: the approach
5. Optimal Rent Extraction in Pre-Industrial England and France – Default Risk and Monitoring Costs
6. Second Order Filter Distribution Approximations for Financial Time Series with Extreme Outlier
7. The name is absent
8. The name is absent
9. Testing the Information Matrix Equality with Robust Estimators
10. SAEA EDITOR'S REPORT, FEBRUARY 1988