Monopolistic Pricing in the Banking Industry: a Dynamic Model



Dt =---—----Dt- 1--K----Ft +--K----NW +--Xt----.

1 — κ (1 — q )         1 — κ (1 — q )      1 — κ (1 — q )        1 — κ (1 — q )

The second equation can be exposed as:

Ft = — Dt-1 1 — K (1 q ) Dt + NW + Xt.
κκ   κ

YY- Dt 1 κ (1 q ) E[Dt +1] + NW + E[Xt+1] = 1 (1 - q)κ
κ         κ                     κ        γY β

YY D1-1 1 — κ<1 q) Dt + NW + Xt 1 + W   ∙, ) I 2 β I . I κ I Dt +

L κ t 1 κ t +     + κ J +             YY β              t +

+ βγγ + (1 q)κ 1NW + (1 — q) Xt + 1  (1 q)κ E1 Zt +11.

YY β                      YY β     α

(77)

(78)

(79)


Putting all the terms in D on the left-hand side, we obtain the following expression:

1 κ (1 q ) E [ Dt +1∣ + γγ Dt +
κκ


1 (1 q )κ 1 κ (1 q ) D l

-----D--Dt +

YY β       κ


17 (1 q) [yYβ [1 (1 q)κ]] n 1 (1 — q) κγγ

E--------------------Dt--γγγβ~-D 1 -

= 1 (1 q)κ NW + 1 (1 q)κ Xt + βγγ + (1 q)κ 1NW +

Yγβ            Yγβ    κ         Yγβ

—NW + (1 — q) Xt E[Xt+1] + 1 (1 ~ q)κ E1 Zt +1].
κ        Yγ β     α

(80)


It can be simplified as:

E[Dt+1]


Yy    d 1 (1 — q)κ D + (1 q) γYβ [1 (1 q)κ]]      κ D +

1 — κ (1 — q ) t       γγ β      t               γγ β             1 — κ (1 — q ) t

+ βDt 1


—NW

Yγβ


ɪ Xt

Yγβ


βγγ [(1 — q ) κ — 1] κ

Yy β        1 — κ (1 — q )


κ

— κ (1 — q )


NW +


--K----7 (1 — q)Xt +-----1----?E[Xt +1] — ——E1 Zt+1]. (81)

1 — κ(1 — q)(    q)  t +1 — κ(1 — q)  [ t+1]   yyβ  La  t+1J  ()

The left-hand side of the equation has exactly the same structure as the one in Ft and clearly the
simplification is identical. We will now study the different parts of the right-end side, starting with
net worth.

K_nw _ βιγ - [(1 - q)κ - 1]---κ---NW +---κ---NW.

(82)


Yy β               Yy β        1 — κ (1 — q )       1 — κ (1 — q )

Under a common denominator we obtain the following result:

K [1 κ (1 q )] βYγκ + [(1 q )κ 1] κ + Yy βκ     = 0

YY β [1 — K (1 — q )]                           .

As a consequence the impact of net worth on deposits is null, as we would intuitively expect. The
direct effect of interest rates is due to:

1K                             1

YYβXt 1 — K(1 — q) (1 q)Xt + 1 — K(1 — q) E[Xt+1].

Or:

YYβκ(1 q) + [1 κ(1 q)] X +      1 x

Yy β [1 κ (1 q )]        1   1 κ (1 q ) *+1

26



More intriguing information

1. The value-added of primary schools: what is it really measuring?
2. Linking Indigenous Social Capital to a Global Economy
3. Wounds and reinscriptions: schools, sexualities and performative subjects
4. The name is absent
5. The name is absent
6. Natural hazard mitigation in Southern California
7. The name is absent
8. The name is absent
9. Measuring and Testing Advertising-Induced Rotation in the Demand Curve
10. The name is absent