fe
-fl (⅛)
-1
7 - 2 -f '(⅛).
7 - 1 f(eA ’
V i,ε
(33)
Hence
*>=7—1 ∑ (a+
i ×
⅛i
7
dei ∕dε
Ai ■ —
c I—7
)∙
(34)
Divide (30) by f (eiε) and aggregate. This yields
1 = -τ'(e) ∑-diffl(<Ы = ~'(^) ∑ (a +1—-) (dJfiAA (35)
i i 7 ' /
Now divide (30) by fi (⅛)∙ This and (35) yield
fl (<M
fi (A)
dei
dε
-'l. j(ɛ) =________-djfi(eA________
fi ' ∑j ⅛√Λ∙(M (λ + ⅛)
(36)
The left hand side of this equation, multiplied by -1, equals the term in
the squared bracket of (34). Hence it follows that
7 - 2 ^2A + 1-7________
7 - 1 i [∑J (½√f,∙ (eie))(a + f⅛)]
(⅛ )'
∀ ε.
(37)
Mne gil ≡ (Г + ɪ/ / l'a + ɪ)
V i, ε so that i g-iε = 1 ^ ε.
Then (37) yields
43