Heterogeneity of Investors and Asset Pricing in a Risk-Value World



This proves the second part of equation (21). The proof of proposition 9
is the same for
7 = -∞.

Appendix H: Proof of Proposition 10

For a HARA-based risk function with 1 > 7 > -∞ the FOC (11) resp.

(14) yields

7-1

% ⅛ 1 + Si];  V i,ε,


(42)


or

. e,∙^              ,          .                            ,, i_ . .                                               . ,

A + -----= (—% K — 1 + si ])7^1; V i,ε-           (43)

1 7

Aggregating across investors yields A + eε /(1 7). Dividing the aggregate
equation by
Ai + eiε∕(1 — 7) yields 1∕g and hence,

1/9ie


=∑(

3 x


1 + Si] 1

1 + s3'] /


(44)


so that

d(1∕gig) = ^  1   / —% λ 1-7 / - — 1 + Si 1-7 1    Sj — si        )

ʌl 7 ~ljJ πε 1 + sJ     K 1 + s3)2 π ε'

(45)

Assume 7 < 1 and s⅛sj Vi. Then πz(ε) < 0 implies d(1∕g⅛ε)∕dε < 0 so
that
dg∕dε > 0.

45



More intriguing information

1. THE CO-EVOLUTION OF MATTER AND CONSCIOUSNESS1
2. ESTIMATION OF EFFICIENT REGRESSION MODELS FOR APPLIED AGRICULTURAL ECONOMICS RESEARCH
3. Critical Race Theory and Education: Racism and antiracism in educational theory and praxis David Gillborn*
4. Credit Market Competition and Capital Regulation
5. Wirtschaftslage und Reformprozesse in Estland, Lettland, und Litauen: Bericht 2001
6. The Economic Value of Basin Protection to Improve the Quality and Reliability of Potable Water Supply: Some Evidence from Ecuador
7. DURABLE CONSUMPTION AS A STATUS GOOD: A STUDY OF NEOCLASSICAL CASES
8. The name is absent
9. The name is absent
10. The Demand for Specialty-Crop Insurance: Adverse Selection and Moral Hazard