This proves the second part of equation (21). The proof of proposition 9
is the same for 7 = -∞.
Appendix H: Proof of Proposition 10
For a HARA-based risk function with 1 > 7 > -∞ the FOC (11) resp.
(14) yields
7-1
—% ⅛ — 1 + Si]; V i,ε,
(42)
or
. e,∙^ , . ,, i_ . . . ,
A + -----= (—% K — 1 + si ])7^1; V i,ε- (43)
1 — 7
Aggregating across investors yields A + eε /(1 — 7). Dividing the aggregate
equation by Ai + eiε∕(1 — 7) yields 1∕giε and hence,
1/9ie
=∑(
3 x
1 + Si] ∖ 1-τ
1 + s3'] /
(44)
so that
d(1∕gig) = ^ 1 / —% λ 1-7 / - — 1 + Si ∖ 1-7 1 Sj — si )
dε ʌl — 7 ∖~l∣jJ ∖πε — 1 + sJ K — 1 + s3)2 π ε'
(45)
Assume 7 < 1 and s⅛ ≤ sj Vi. Then πz(ε) < 0 implies d(1∕g⅛ε)∕dε < 0 so
that dghε∕dε > 0.
45