Heterogeneity of Investors and Asset Pricing in a Risk-Value World



This proves the second part of equation (21). The proof of proposition 9
is the same for
7 = -∞.

Appendix H: Proof of Proposition 10

For a HARA-based risk function with 1 > 7 > -∞ the FOC (11) resp.

(14) yields

7-1

% ⅛ 1 + Si];  V i,ε,


(42)


or

. e,∙^              ,          .                            ,, i_ . .                                               . ,

A + -----= (—% K — 1 + si ])7^1; V i,ε-           (43)

1 7

Aggregating across investors yields A + eε /(1 7). Dividing the aggregate
equation by
Ai + eiε∕(1 — 7) yields 1∕g and hence,

1/9ie


=∑(

3 x


1 + Si] 1

1 + s3'] /


(44)


so that

d(1∕gig) = ^  1   / —% λ 1-7 / - — 1 + Si 1-7 1    Sj — si        )

ʌl 7 ~ljJ πε 1 + sJ     K 1 + s3)2 π ε'

(45)

Assume 7 < 1 and s⅛sj Vi. Then πz(ε) < 0 implies d(1∕g⅛ε)∕dε < 0 so
that
dg∕dε > 0.

45



More intriguing information

1. A Hybrid Neural Network and Virtual Reality System for Spatial Language Processing
2. The name is absent
3. The name is absent
4. Text of a letter
5. Evaluation of the Development Potential of Russian Cities
6. FASTER TRAINING IN NONLINEAR ICA USING MISEP
7. The name is absent
8. The name is absent
9. An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image
10. Spectral calibration of exponential Lévy Models [1]