GROWTH, UNEMPLOYMENT AND THE WAGE SETTING PROCESS.



Now, wt > wtc implies, using ( 39):

γt(1 - τt-i)wt-i + (1 - γt)st    ∕1      1- α 1-α rSt-1 iα

(40)


------->----VTi-----ʌ------- > (1 - α)(At)    ʒ-

(1 - α)(1 - τt )                           Nt

If γt = 1 inequality 40 becomes:

wtc <


(1 - Tt-i)wt-i _ w
(1 - α)(1 - τt)


(41)


If 0 γt < 1 solving 40 for st we obtain:

st


At                                '..

(42)


(1 - γt)

γthu-  γf γ γt γ W( γ∏V-' Wt+ — Yt(ɪ  ʃt 1)wt  1 + 0^  γt)st    ?..C   Tf Q, <5 Q, j^T)Pf∩ Q∩P

u uSθj jj st > st we avec∙ `wt — (i α)(i τ )        > wt .  ∙' st ðt enw we

have Le — Nt in which case wt — wtc. Finally we compute when st < 0. From
( 42) this inequality holds ijand only ij:

ιc < Yt(1 - τt-i)wt-i
t (1 - α)(1 - τt)

wt .


(43)


Note from (41) and ( 43) that wt0.

Proof of Theorem 4. 1 First we compute the best reply junction oj the union

when τt — 1 - βt. Using the proof of proposition 3.1.1 we obtain: If wtc <
w”   Yt(i-Tt-1)wt-1 then w. Yt(i-Tt-1)wt-1+(i-Yt)st > wc IJ wc w”

w t (i-α)βt then wt          (i-α)βt          wt . Ij wt w t

and γt — 1 then wtwtc. If wtcwt and 0 γt < 1 then there ex-
ists s”
t (i α)βtwt (i-Yi) τt-1)wt-10 such that if st > s”t then wt
Yt(i τt~(i-α-)β+(i Yt)st > wc and if sts” t then wt — wtc. We denote this
best reply function of the union as w
t(wt-i, τt-i, 1 βt, st, γt).

Now we compute the best reply function of the union when τt — 0. Using the
proof of proposition 3.1.1 we obtain: If wC
wt — Yt(i (i' /.)w' 1 then wt
γt(
ɪ__τt-1)wt-1 + (ɪ__γt)st /∕,c Jf /∕,c '> 7∕/ nrd ,y, — 1 then cιn — cnc Jf cnc γ tιd

(i  α)              > ɛwt.  Jj ^wt 'w!t ann  tt — ɪ tven `wt — 'w!t.  Jj 'w!t 'wit

and 0 γt < 1 then there exists st (i α)wt γtt(i τt-1)wt-1 0 such that if
γ
t                                 t                 (i-γt)

st > st then wt Yt(i τt-1)W--,1)+(i Yt)st > wt and if st s't then wt — wf. We

denote this best reply function of the union as wt(wt-it-i, 0, stt).

Functions wt(wt-it-i, 1 βt, stt) and wt(wt-it-i, 0, st, γt) when γt

1 and wc < wt, wt wc < w” t and w” t wc are represented in figures 1.a, 1.b
and 1.c respectively. Functions w
t(wt-i, τt-i, 1βt, st, γt) and wt(wt-i, τt-i, 0, st, γt)
when
0 γt < 1 and wc < wt, wt wc < w” t and w” t wc are represented
in figures 2.a, 2.b and 2.c respectively. On the other hand, we can also repre-
sent function s
t in all figures. Looking at figure 1.a it is obvious that there is a
unique equlibrium with unemployment. Looking at figure 1.b there is an equilib-
rium with unemployment and an equilibrium with full employment. Looking at

19



More intriguing information

1. Conflict and Uncertainty: A Dynamic Approach
2. Globalization, Divergence and Stagnation
3. The name is absent
4. Distortions in a multi-level co-financing system: the case of the agri-environmental programme of Saxony-Anhalt
5. EU Preferential Partners in Search of New Policy Strategies for Agriculture: The Case of Citrus Sector in Trinidad and Tobago
6. Regional Intergration and Migration: An Economic Geography Model with Hetergenous Labour Force
7. The name is absent
8. Co-ordinating European sectoral policies against the background of European Spatial Development
9. The name is absent
10. Ultrametric Distance in Syntax
11. A Pure Test for the Elasticity of Yield Spreads
12. Pricing American-style Derivatives under the Heston Model Dynamics: A Fast Fourier Transformation in the Geske–Johnson Scheme
13. Evolutionary Clustering in Indonesian Ethnic Textile Motifs
14. Effects of a Sport Education Intervention on Students’ Motivational Responses in Physical Education
15. Monetary Policy News and Exchange Rate Responses: Do Only Surprises Matter?
16. BUSINESS SUCCESS: WHAT FACTORS REALLY MATTER?
17. Tobacco and Alcohol: Complements or Substitutes? - A Statistical Guinea Pig Approach
18. Skill and work experience in the European knowledge economy
19. The name is absent
20. Qualifying Recital: Lisa Carol Hardaway, flute