Now, wt > wtc implies, using ( 39):
γt(1 - τt-i)wt-i + (1 - γt)st ∕1 1- α ∖1-α rSt-1 iα
(40)
------->----VTi-----ʌ------- > (1 - α)(At) ʒ-
(1 - α)(1 - τt ) Nt
If γt = 1 inequality 40 becomes:
wtc <
(1 - Tt-i)wt-i _ w
(1 - α)(1 - τt)
(41)
If 0 ≤ γt < 1 solving 40 for st we obtain:
st
At '..
(42)
(1 - γt)
γthu- γf γ γt γ W( γ∏V-' Wt+ — Yt(ɪ ʃt 1)wt 1 + 0^ γt)st ?..C Tf Q, <5 Q, j^T)Pf∩ Q∩P
u ∣uSθj jj st > st we avec∙ `wt — (i α)(i τ ) > wt . ∙' st ≤ ðt enw we
have Le — Nt in which case wt — wtc. Finally we compute when st < 0. From
( 42) this inequality holds ijand only ij:
ιc < Yt(1 - τt-i)wt-i
t (1 - α)(1 - τt)
— wt .
(43)
Note from (41) and ( 43) that wt ≥ 0.
Proof of Theorem 4. 1 First we compute the best reply junction oj the union
when τt — 1 - βt. Using the proof of proposition 3.1.1 we obtain: If wtc <
w” — Yt(i-Tt-1)wt-1 then w. — Yt(i-Tt-1)wt-1+(i-Yt)st > wc IJ wc ≥ w”
w t — (i-α)βt then wt — (i-α)βt > wt . Ij wt ≥ w t
and γt — 1 then wt — wtc. If wtc ≥ w”t and 0 ≤ γt < 1 then there ex-
ists s”t — (i α)βtwt (i-Yi) τt-1)wt-1 ≥ 0 such that if st > s”t then wt —
Yt(i τt~(i-α-)β+(i Yt)st > wc and if st ≤ s” t then wt — wtc. We denote this
best reply function of the union as wt(wt-i, τt-i, 1 — βt, st, γt).
Now we compute the best reply function of the union when τt — 0. Using the
proof of proposition 3.1.1 we obtain: If wC < wt — Yt(i (i' /.)w' 1 then wt —
γt(ɪ__τt-1)wt-1 + (ɪ__γt)st /∕,c Jf /∕,c '> 7∕/ nr∣d ,y, — 1 then cιn — cnc Jf cnc γ tιd
(i α) > ɛwt. Jj ^wt ≥ 'w!t ann∣ tt — ɪ t∣ven `wt — 'w!t. Jj 'w!t ≥ 'wit
and 0 ≤ γt < 1 then there exists st — (i α)wt γtt(i τt-1)wt-1 ≥ 0 such that if
γt t (i-γt)
st > st then wt — Yt(i τt-1)W--,1)+(i Yt)st > wt and if st ≤ s't then wt — wf. We
denote this best reply function of the union as wt(wt-i,τt-i, 0, st,γt).
Functions wt(wt-i,τt-i, 1 — βt, st,γt) and wt(wt-i,τt-i, 0, st, γt) when γt —
1 and wc < wt, wt ≤ wc < w” t and w” t ≤ wc are represented in figures 1.a, 1.b
and 1.c respectively. Functions wt(wt-i, τt-i, 1—βt, st, γt) and wt(wt-i, τt-i, 0, st, γt)
when 0 ≤ γt < 1 and wc < wt, wt ≤ wc < w” t and w” t ≤ wc are represented
in figures 2.a, 2.b and 2.c respectively. On the other hand, we can also repre-
sent function st in all figures. Looking at figure 1.a it is obvious that there is a
unique equlibrium with unemployment. Looking at figure 1.b there is an equilib-
rium with unemployment and an equilibrium with full employment. Looking at
19
More intriguing information
1. Licensing Schemes in Endogenous Entry2. IMPACTS OF EPA DAIRY WASTE REGULATIONS ON FARM PROFITABILITY
3. Unilateral Actions the Case of International Environmental Problems
4. Optimal Taxation of Capital Income in Models with Endogenous Fertility
5. The name is absent
6. Benefits of travel time savings for freight transportation : beyond the costs
7. Estimation of marginal abatement costs for undesirable outputs in India's power generation sector: An output distance function approach.
8. Do the Largest Firms Grow the Fastest? The Case of U.S. Dairies
9. The name is absent
10. Personal Experience: A Most Vicious and Limited Circle!? On the Role of Entrepreneurial Experience for Firm Survival