GROWTH, UNEMPLOYMENT AND THE WAGE SETTING PROCESS.



Now, wt > wtc implies, using ( 39):

γt(1 - τt-i)wt-i + (1 - γt)st    ∕1      1- α 1-α rSt-1 iα

(40)


------->----VTi-----ʌ------- > (1 - α)(At)    ʒ-

(1 - α)(1 - τt )                           Nt

If γt = 1 inequality 40 becomes:

wtc <


(1 - Tt-i)wt-i _ w
(1 - α)(1 - τt)


(41)


If 0 γt < 1 solving 40 for st we obtain:

st


At                                '..

(42)


(1 - γt)

γthu-  γf γ γt γ W( γ∏V-' Wt+ — Yt(ɪ  ʃt 1)wt  1 + 0^  γt)st    ?..C   Tf Q, <5 Q, j^T)Pf∩ Q∩P

u uSθj jj st > st we avec∙ `wt — (i α)(i τ )        > wt .  ∙' st ðt enw we

have Le — Nt in which case wt — wtc. Finally we compute when st < 0. From
( 42) this inequality holds ijand only ij:

ιc < Yt(1 - τt-i)wt-i
t (1 - α)(1 - τt)

wt .


(43)


Note from (41) and ( 43) that wt0.

Proof of Theorem 4. 1 First we compute the best reply junction oj the union

when τt — 1 - βt. Using the proof of proposition 3.1.1 we obtain: If wtc <
w”   Yt(i-Tt-1)wt-1 then w. Yt(i-Tt-1)wt-1+(i-Yt)st > wc IJ wc w”

w t (i-α)βt then wt          (i-α)βt          wt . Ij wt w t

and γt — 1 then wtwtc. If wtcwt and 0 γt < 1 then there ex-
ists s”
t (i α)βtwt (i-Yi) τt-1)wt-10 such that if st > s”t then wt
Yt(i τt~(i-α-)β+(i Yt)st > wc and if sts” t then wt — wtc. We denote this
best reply function of the union as w
t(wt-i, τt-i, 1 βt, st, γt).

Now we compute the best reply function of the union when τt — 0. Using the
proof of proposition 3.1.1 we obtain: If wC
wt — Yt(i (i' /.)w' 1 then wt
γt(
ɪ__τt-1)wt-1 + (ɪ__γt)st /∕,c Jf /∕,c '> 7∕/ nrd ,y, — 1 then cιn — cnc Jf cnc γ tιd

(i  α)              > ɛwt.  Jj ^wt 'w!t ann  tt — ɪ tven `wt — 'w!t.  Jj 'w!t 'wit

and 0 γt < 1 then there exists st (i α)wt γtt(i τt-1)wt-1 0 such that if
γ
t                                 t                 (i-γt)

st > st then wt Yt(i τt-1)W--,1)+(i Yt)st > wt and if st s't then wt — wf. We

denote this best reply function of the union as wt(wt-it-i, 0, stt).

Functions wt(wt-it-i, 1 βt, stt) and wt(wt-it-i, 0, st, γt) when γt

1 and wc < wt, wt wc < w” t and w” t wc are represented in figures 1.a, 1.b
and 1.c respectively. Functions w
t(wt-i, τt-i, 1βt, st, γt) and wt(wt-i, τt-i, 0, st, γt)
when
0 γt < 1 and wc < wt, wt wc < w” t and w” t wc are represented
in figures 2.a, 2.b and 2.c respectively. On the other hand, we can also repre-
sent function s
t in all figures. Looking at figure 1.a it is obvious that there is a
unique equlibrium with unemployment. Looking at figure 1.b there is an equilib-
rium with unemployment and an equilibrium with full employment. Looking at

19



More intriguing information

1. CONSUMER ACCEPTANCE OF GENETICALLY MODIFIED FOODS
2. Fiscal Insurance and Debt Management in OECD Economies
3. Auction Design without Commitment
4. The name is absent
5. DEMAND FOR MEAT AND FISH PRODUCTS IN KOREA
6. The name is absent
7. Assessing Economic Complexity with Input-Output Based Measures
8. The name is absent
9. What Contribution Can Residential Field Courses Make to the Education of 11-14 Year-olds?
10. Poverty transition through targeted programme: the case of Bangladesh Poultry Model