Appendix
• Derivation of the first best tax rules.
The first order conditions for an interior maximum are given by:
∂ L ∂ tx |
- g ʃ dz I 1' 1 ∂ qx |
ug d x -4-—+ ug d qx |
u3 ∂y-1 + γ (x + tx 7 + ty |y.) =0 (30a) | |
∂ L d ty |
- g ʃ d z . |
ug d x —--+ u1d qy |
u3 ⅛L f + γ |
{y+txdx+ty⅜} =0 (30b) |
∂L |
= - '½ dm |
ug d x -I—-— |
+ u3 y y ¾ - |
γ {1+tx dm+ty 1} |
Performing ∣L — dLx and ∣L — dLy gives:
'ɔ Otx OT Oty ∂T & 'ɔ
r db |
ug ∂b |
+ u| lb) + 7 (tx f- + ty Ib) = 0 |
½ ∂b |
ug ∂b + ug dqy |
+u∣ Я+γ ½txdb+ty ∣b ¾ = 0 |
(31a)
(31b)
where a^denotes a compensated price effect and 7 =f ~. Using the homogeneity
condition on the compensated price effects, (31) may be rewritten as
1 |
g O |
O |
— qx 1 0 |
—qy 1 |
Ox |
Ox |
= Y [ tx |
ty ] |
Ox |
Ox Oqy Oqy _ |
. (32) | ||
OS. |
Xx |
Because the substitution matrix (Oqx O qy ) is negative definite, (32) reduces to
Oq x Oqy
u. U2 A / ug /99 A
7tχ = qx--g , and γty = qy--y. (33a)
u1 u1
Inserting these conditions back in the FOC for T, shows that 7 = 1.
Since qx = u2 and qy = uɪɪ, the first best tax rates are as in the text.
• Derivationof ug(z,x,y)
By definition of F(∙)
ГУ
z + μ(χ)dχ =
JyD
f x,y,u(^z + У μ(χ)dχ,χ,yj
(34)
f χ,y,u^z + У μ(χ)dχ,χ,y
- У μ(χ)dχ
(35)
12