Substituting (21) into (20) gives
dP x
=≡ = - +
dp x
Px
6p
x
dP
J dp
Substituting for dp
from (18) and using x = xs gives
dP
dP)
χ________1________Γs_ χ/ s _ (p-Px ʌ
xS- (x-x∖^-χs S rΛ6P m 6m6P)
X y x x χ x ^m x p p IIU
> 0.
(23)
Differentiating (6) w.r.t. x, we obtain
dP
dx)
dp
dx
x) dp 1 x
+ ~μ + — (P - P) + (P - P) —2 xP
x dx x (x)2
dp
dxP
-x
px
6P
x
dp
dxP
1 (P - P).
x
Substituting for dp∙ from (19) and using x = xs, we obtain
dP
dxP
S — (x — x)xm — xp
xp (6P
(p — p)p
m
6m6p)
< 0.
(24)
Proposition 3
Differentiating (8), and using Roy’s identity,
dv = Vpdp + vm dpp — Λ P = -vm dp (x — x) + x
dp> dp ∖Pp J dp>
28
More intriguing information
1. The name is absent2. The resources and strategies that 10-11 year old boys use to construct masculinities in the school setting
3. Party Groups and Policy Positions in the European Parliament
4. The name is absent
5. Multi-Agent System Interaction in Integrated SCM
6. The Mathematical Components of Engineering
7. On the Existence of the Moments of the Asymptotic Trace Statistic
8. Regulation of the Electricity Industry in Bolivia: Its Impact on Access to the Poor, Prices and Quality
9. Trade and Empire, 1700-1870
10. Lumpy Investment, Sectoral Propagation, and Business Cycles