ESTIMATION OF EFFICIENT REGRESSION MODELS FOR APPLIED AGRICULTURAL ECONOMICS RESEARCH



Table 3. Parameter estimates, standard error estimates, and statistical significance of parameters of normal

and non-normal error regression models for corn and soybean prices.

_____OLS

______AR(1)_____

SUR-AR(I)

NSUR-AR(I)

NNSUR-AR(I)

Par. Est.

S.E. Est.

Par. Est.

S.E. Est.

Par. Est.

S.E. Est. Par. Est.

S.E. Est. Par. Est. S.E. Est.

θc

0.9446 0.2875**

μ c

— —

Bco

3.0840

0.1423**

3.0860

0.2263**

3.0817**

0.2273

3.1351

0.1600**

3.1722 0.1065**

Bc1

-1.5611

1.3432ns

-1.4552

2.1317ns

-1.4237ns

2.1879

-2.1217

0.5563**

-2.3509 0.3929**

Bc2

-1.0001

2.6509ns

-1.3787

4.1937ns

-1.4244ns

4.3186

— —

σc

0.3490

0.2811

0.2818**

0.0282

0.2821

0.0282**

0.2990 0.0804**

pc

0.5460

0.1185**

0.5347**

0.1111

0.5353

0.1112**

0.5688 0.0987**

θs

0.5677 0.1600**

μ s

15.7161 5.0376**

Bso

5.2544

0.3246**

5.3045

0.4998**

5.2899

0.4291**

5.3262

0.4172**

5.3607 0.3347**

Bs1

11.8443

3.0636**

11.5373

4.7101**

11.6223

4.0533**

11.1429

3.8273**

10.1967 2.8094**

Bs2

-25.4146

6.0462**

-25.0758

9.2701**

-25.1588 7.9850**

-24.1720

7.4968**

-21.4259 5.3032**

σs__

0.7960

0.6587

0.6645

0.0677**

0.6645

0.0677**

0.7369 0.1603**

ps__

0.5132

0.1214**

0.4066 0.1227**

0.4073

0.1232**

0.4484 0.0763**

pcs

0.3598 0.1310**

0.3597

0.1311**

0.4644 0.1158**

MVCLF

33.86

MVCLF

36.98 ]

MVCLF

36.92

MVCLF 52.54

R2

R2c=0.44

R2s=0.28

R2c=0.61 R2s=0.48

R2c=0.61 R2s=0.47 R2c=0.61 R2s=0.47

R2c=0.61R2s=0.47

Notes: MVCLF stands for the maximum value reached by the concentrated log-likelihood function. Par.
Est. and S.E. Est. refer to the parameter and standard error estimates, respectively. The parameter and
standard error estimates corresponding to B
ci and Bsi, and to Bc2 and Bs2 have been divided by 100 and
10000, respectively. * and ** denote statistical significance and the 90 and 95% level, respectively,
according to two-tailed t tests. The R
2’s are calculated by dividing the regression sums of squares (based on
the autocorrelated {AR(1)} predictions) by the total sums of squares, i.e. it are the square of the correlation
coefficients between the AR(1) predictions and the observed corn (c) and soybean (s) prices.

26



More intriguing information

1. The name is absent
2. Kharaj and land proprietary right in the sixteenth century: An example of law and economics
3. Economies of Size for Conventional Tillage and No-till Wheat Production
4. Meat Slaughter and Processing Plants’ Traceability Levels Evidence From Iowa
5. The name is absent
6. The name is absent
7. The name is absent
8. Word searches: on the use of verbal and non-verbal resources during classroom talk
9. Wettbewerbs- und Industriepolitik - EU-Integration als Dritter Weg?
10. Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test