ESTIMATION OF EFFICIENT REGRESSION MODELS FOR APPLIED AGRICULTURAL ECONOMICS RESEARCH



Table 3. Parameter estimates, standard error estimates, and statistical significance of parameters of normal

and non-normal error regression models for corn and soybean prices.

_____OLS

______AR(1)_____

SUR-AR(I)

NSUR-AR(I)

NNSUR-AR(I)

Par. Est.

S.E. Est.

Par. Est.

S.E. Est.

Par. Est.

S.E. Est. Par. Est.

S.E. Est. Par. Est. S.E. Est.

θc

0.9446 0.2875**

μ c

— —

Bco

3.0840

0.1423**

3.0860

0.2263**

3.0817**

0.2273

3.1351

0.1600**

3.1722 0.1065**

Bc1

-1.5611

1.3432ns

-1.4552

2.1317ns

-1.4237ns

2.1879

-2.1217

0.5563**

-2.3509 0.3929**

Bc2

-1.0001

2.6509ns

-1.3787

4.1937ns

-1.4244ns

4.3186

— —

σc

0.3490

0.2811

0.2818**

0.0282

0.2821

0.0282**

0.2990 0.0804**

pc

0.5460

0.1185**

0.5347**

0.1111

0.5353

0.1112**

0.5688 0.0987**

θs

0.5677 0.1600**

μ s

15.7161 5.0376**

Bso

5.2544

0.3246**

5.3045

0.4998**

5.2899

0.4291**

5.3262

0.4172**

5.3607 0.3347**

Bs1

11.8443

3.0636**

11.5373

4.7101**

11.6223

4.0533**

11.1429

3.8273**

10.1967 2.8094**

Bs2

-25.4146

6.0462**

-25.0758

9.2701**

-25.1588 7.9850**

-24.1720

7.4968**

-21.4259 5.3032**

σs__

0.7960

0.6587

0.6645

0.0677**

0.6645

0.0677**

0.7369 0.1603**

ps__

0.5132

0.1214**

0.4066 0.1227**

0.4073

0.1232**

0.4484 0.0763**

pcs

0.3598 0.1310**

0.3597

0.1311**

0.4644 0.1158**

MVCLF

33.86

MVCLF

36.98 ]

MVCLF

36.92

MVCLF 52.54

R2

R2c=0.44

R2s=0.28

R2c=0.61 R2s=0.48

R2c=0.61 R2s=0.47 R2c=0.61 R2s=0.47

R2c=0.61R2s=0.47

Notes: MVCLF stands for the maximum value reached by the concentrated log-likelihood function. Par.
Est. and S.E. Est. refer to the parameter and standard error estimates, respectively. The parameter and
standard error estimates corresponding to B
ci and Bsi, and to Bc2 and Bs2 have been divided by 100 and
10000, respectively. * and ** denote statistical significance and the 90 and 95% level, respectively,
according to two-tailed t tests. The R
2’s are calculated by dividing the regression sums of squares (based on
the autocorrelated {AR(1)} predictions) by the total sums of squares, i.e. it are the square of the correlation
coefficients between the AR(1) predictions and the observed corn (c) and soybean (s) prices.

26



More intriguing information

1. Corporate Taxation and Multinational Activity
2. AGRICULTURAL PRODUCERS' WILLINGNESS TO PAY FOR REAL-TIME MESOSCALE WEATHER INFORMATION
3. A Multimodal Framework for Computer Mediated Learning: The Reshaping of Curriculum Knowledge and Learning
4. The name is absent
5. Mean Variance Optimization of Non-Linear Systems and Worst-case Analysis
6. Does South Africa Have the Potential and Capacity to Grow at 7 Per Cent?: A Labour Market Perspective
7. Surveying the welfare state: challenges, policy development and causes of resilience
8. Micro-strategies of Contextualization Cross-national Transfer of Socially Responsible Investment
9. Locke's theory of perception
10. Public infrastructure capital, scale economies and returns to variety