The name is absent



24


Stata Technical Bulletin


STB-22


In this example, censor generates two variables, jobl and Tjobl. jobl is the 0/1 variable that records the individual’s
change in status. Tjobl records the time—age in this example—at which the change occurs. For individual ‘1’, the transition
took place at the end of the first observation, when he passed from the not working state to the self-employed state. This
individual was 22 years old at the end of the first observation.

Censoring can occur for reasons unrelated to the phenomenon under study. In this example data set, some individuals are
lost from the survey. The variable lost is coded as ‘0’ when an individual is still in the survey and as ‘1’ when the individual
is “lost”.

The before () option of censor provides a convenient way to handle the lost individuals:

. drop jobl Tjobl

. censor id age = activity==l activity==2, generate(jobl) before(Iost==I)

. list id activity age lost jobl Tjobl

id

activity

age

lost

jobl

TjObl

1.

1

nonactiv

22

in

1

22

2.

1

selfemp

27

in

3.

1

selfemp

39

in

4.

2

nonactiv

19

in

O

19

ε.

3

nonactiv

19

in

1

19

6.

3

selfemp

22

in

.

.

7.

3

waged

28

in

.

.

S.

4

nonactiv

7

in

O

7

9.

4

nonactiv

20

out

.

.

10.

4

selfemp

23

out

.

.

11.

ε

nonactiv

4

in

1

4

12.

ε

waged

11

in

.

.

13.

ε

nonactiv

22

in

.

.

14.

ε

waged

28

in

.

.

ιε.

6

nonactiv

12

in

O

12

16.

6

nonactiv

24

out

.

.

17.

6

waged

27

out

.

.

18.

7

nonactiv

24

in

O

24

19.

8

nonactiv

16

in

O

16

20.

8

nonactiv

39

out

Suppose we need to create two censoring variables for two competing risks; for example, wage-work and self-employment.
censor can handle this case as well:

. censor id age = activity==!, generate(waged) before(Iost==I activity==2)

. censor id age = activity==2, generate(self) before(lost==l activity==l)

. list id activity age waged Twaged self Tself, nodisplay

id

activity

age

waged

Twaged

self

Tself

1.

1

nonactiV

22

O

22

1

22

2.

1

selfemp

27

3.

1

selfemp

39

4.

2

nonactiV

19

O

19

O

19

ε.

3

nonactiV

19

O

19

1

19

6.

3

selfemp

22

.

.

.

.

7.

3

waged

28

.

.

.

.

8.

4

nonactiV

7

O

7

O

7

9.

4

nonactiV

20

.

.

.

.

10.

4

selfemp

23

.

.

.

.

11.

ε

nonactiV

4

1

4

O

4

12.

ε

waged

11

.

.

.

.

13.

ε

nonactiV

22

.

.

.

.

14.

ε

waged

26

.

.

.

.

ιε.

6

nonactiV

12

O

12

O

12

16.

6

nonactiV

24

.

.

.

.

17.

6

waged

27

.

.

.

.

18.

7

nonactiV

24

O

24

O

24

19.

8

nonactiV

16

O

16

O

16

20.

8

nonactiV

39



More intriguing information

1. The name is absent
2. Cultural Neuroeconomics of Intertemporal Choice
3. The name is absent
4. Partner Selection Criteria in Strategic Alliances When to Ally with Weak Partners
5. AGRICULTURAL TRADE LIBERALIZATION UNDER NAFTA: REPORTING ON THE REPORT CARD
6. The name is absent
7. The Institutional Determinants of Bilateral Trade Patterns
8. Økonomisk teorihistorie - Overflødig information eller brugbar ballast?
9. ENERGY-RELATED INPUT DEMAND BY CROP PRODUCERS
10. Agricultural Policy as a Social Engineering Tool