The name is absent



Table 4

Probit estimates of marginal effects evaluated at the means of explanatory variables

EU

AT

DE

DK

ES

FI

FR

GR

IE

IT

LU

NL

PT

SE

UK

employ

0.017

-0.197 ***

-0.037

-0.009

0.027

0.018

0.012

0.005

0.044

0.057

-0.012

0.070 *

0.016

0.065 **

0.080 *

0.019

0.046

0.042

0.057

0.055

0.046

0.082

0.030

0.033

0.052

0.080

0.036

0.033

0.036

0.045

unemploy

0.081 ***

-0.010

0.108 **

0.026

0.064

0.095 **

0.066

-0.001

0.011

0.135 *

-0.133

-0.105

-0.092

0.021

0.022

0.023

0.091

0.043

0.083

0.044

0.041

0.061

0.042

0.027

0.085

0.162

0.091

0.112

0.051

0.100

isb

0.000

0.066

0.038 **

-0.018

-0.008

-0.060 ***

0.016

0.014 **

-0.025

-0.071

0.210 ***

0.024

-0.016

-0.014

-0.093 **

0.011

0.051

0.017

0.045

0.023

0.008

0.028

0.006

0.020

0.075

0.057

0.024

0.039

0.013

0.044

relinc

-0.009

-0.012

-0.011

-0.002

-0.008

-0.006

-0.016

-0.006

-0.009

-0.029

0.013

-0.008

-0.017 *

-0.002

-0.002

0.006

0.014

0.014

0.032

0.029

0.011

0.019

0.013

0.020

0.026

0.036

0.018

0.010

0.008

0.011

ed0

0.129 ***

0.171

t

s(1)

0.106

0.039

0.094

0.001

0.219 ***

0.354 **

0.169

-0.037

0.152

f(10)

f(1)

0.037

0.092

0.087

0.140

0.062

0.052

0.084

0.161

0.183

0.135

0.096

ed1

0.098 ***

0.031

0.113 ***

0.136 ***

0.030

0.007

0.103 **

0.032

0.064 *

0.175 ***

0.093 *

0.063 *

-0.018

0.059 ***

0.119 ***

0.015

0.035

0.036

0.036

0.057

0.017

0.044

0.020

0.034

0.053

0.053

0.033

0.041

0.019

0.025

ed3

-0.124 ***

-0.084 **

-0.111 ***

-0.163 ***

0.038

-0.114 ***

-0.113 ***

-0.147 ***

-0.107 ***

-0.027

-0.102

-0.169 ***

-0.050

-0.064 ***

-0.218 ***

0.015

0.038

0.019

0.036

0.075

0.034

0.026

0.032

0.032

0.124

0.066

0.027

0.049

0.015

0.031

media

-0.017 ***

0.004

-0.025 *

-0.024 *

0.033

0.006

-0.031 **

-0.017

-0.006

0.002

-0.004

0.007

-0.013

-0.002

-0.037 ***

0.006

0.011

0.013

0.013

0.023

0.006

0.016

0.013

0.014

0.029

0.015

0.011

0.032

0.002

0.009

friend1

-0.119 ***

-0.144 ***

-0.130 ***

-0.110 ***

-0.179 ***

-0.127 ***

-0.123 ***

-0.078 ***

-0.019

-0.157 ***

-0.006

-0.076 ***

-0.143 **

-0.002

-0.076 ***

0.011

0.035

0.018

0.023

0.041

0.013

0.028

0.024

0.028

0.050

0.063

0.026

0.065

0.024

0.027

friend2

-0.199 ***

-0.319 ***

-0.171 ***

-0.270 ***

-0.314 ***

-0.299 ***

-0.228 ***

-0.152 ***

-0.130 ***

-0.256 **

0.002

-0.086 **

-0.317 ***

-0.032 *

-0.102 ***

0.018

0.035

0.037

0.058

0.051

0.041

0.038

0.052

0.021

0.057

0.064

0.036

0.047

0.019

0.033

racist

0.129 ***

-0.002

0.122 ***

0.119 ***

0.021

0.029 **

0.120 ***

0.017

0.101 ***

0.111 *

-0.005

0.173 ***

0.116 ***

0.107 ***

0.209 ***

0.012

0.042

0.022

0.018

0.035

0.013

0.035

0.025

0.029

0.054

0.038

0.030

0.029

0.012

0.032

citizen

0.073 **

-0.047

0.129 ***

-0.018

0.319 **

0.140 *

-0.090

0.215 ***

0.149 ***

f(1)

0.051

-0.033

0.074

-0.001

0.119

0.033

0.115

0.023

0.124

0.103

0.081

0.102

0.078

0.039

0.069

0.102

0.232

0.034

0.128

ethnic

0.018

0.095 *

-0.087

0.080

-0.218 **

-0.261 **

0.082

-0.087 ***

-0.101

0.514 *

-0.169 *

0.060

0.014

0.016

0.063

0.033

0.049

0.053

0.111

0.082

0.111

0.090

0.027

0.058

0.212

0.092

0.068

0.096

0.072

0.077

fparent

-0.051 **

0.007

0.017

0.015

0.009

0.077

-0.130 ***

-0.080 **

0.095

-0.095

-0.098

-0.080 *

-0.103

0.031

-0.066

0.022

0.024

0.039

0.056

0.081

0.056

0.045

0.035

0.075

0.101

0.060

0.045

0.119

0.038

0.045

female

-0.008

-0.003

-0.056 **

-0.064 *

0.035

-0.094 ***

0.036

-0.050 **

-0.040 *

0.029

0.020

-0.047

0.067

-0.020

0.017

0.013

0.032

0.023

0.034

0.036

0.026

0.042

0.025

0.022

0.046

0.046

0.030

0.045

0.015

0.019

age

0.001 ***

0.005 ***

0.002 **

0.003 ***

0.000

0.007 ***

0.003 ***

0.001 **

0.000

0.000

0.000

0.000

0.002

0.000

0.000

0.000

0.001

0.000

0.000

0.001

0.000

0.000

0.000

0.000

0.001

0.001

0.000

0.002

0.000

0.000

log pseudolikelihood

-10621.331

-678.319

-1189.042

-751.780

-477.409

-1012.549

-661.650

-537.589

-819.938

-272.724

-408.045

-1154.942

-509.107

-595.321

-995.562

McFadden's (1974) LRI

0.110

0.103

0.078

0.083

0.061

0.116

0.118

0.127

0.052

0.091

0.050

0.054

0.089

0.087

0.132

R2p

0.280

0.190

0.088

0.194

0.225

0.274

0.200

0.054

0.025

0.090

0.149

0.068

0.077

0.009

0.271

Sum of PCP

1.341

1.284

1.171

1.260

1.255

1.327

1.294

1.150

1.063

1.167

1.155

1.136

1.166

1.028

1.315

obs.

17640.000

1123.000

1979.000

1197.000

734.000

1663.000

1112.000

1280.000

1419.000

480.000

620.000

1820.000

837.000

1697.000

1666.000

t All non-missing observations are 0, and the corresponding variable is dropped in estimation.

s(n) n observations predict success perfectly, and the corresponding variable and the n observations are dropped in estimation.
f(n) n observations predict failure perfectly, and the corresponding variable and the n observations are dropped in estimation.

* 10%   ** 5%   *** 1%

The three goodness-of-fit measures are described in Verbeek


(2004: 194-197).


Sum of PCP is the sum of the proportions of correct predictions for anti


1 and anti = 0.


Sampling weights provided by ESS are applied in maximum likelihood estimation.

For EU, a further weight adjustment is made to reflect the population size of each country.

Estimated standard errors are based on the assumption that observations are not necessarily independent within each region of a country, but are independent across regions of the country.

For EU, 13 country dummies are included with UK being the reference.



More intriguing information

1. Better policy analysis with better data. Constructing a Social Accounting Matrix from the European System of National Accounts.
2. The name is absent
3. Ronald Patterson, Violinist; Brooks Smith, Pianist
4. The problem of anglophone squint
5. Who’s afraid of critical race theory in education? a reply to Mike Cole’s ‘The color-line and the class struggle’
6. Nach der Einführung von Arbeitslosengeld II: deutlich mehr Verlierer als Gewinner unter den Hilfeempfängern
7. TINKERING WITH VALUATION ESTIMATES: IS THERE A FUTURE FOR WILLINGNESS TO ACCEPT MEASURES?
8. Langfristige Wachstumsaussichten der ukrainischen Wirtschaft : Potenziale und Barrieren
9. SAEA EDITOR'S REPORT, FEBRUARY 1988
10. The name is absent