Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test



N ∑E D⅛∑(x1≠


Exι,it)


i
1 ,, „    ,,2       „

N IID1TIl supE


t

T X (x1,it - Ex1,it)
t


2

0,


(59)


where the last convergence result holds by Lemma 15(a). Similarly, by Lemma
15(b),


EN X D2kT T X (x2k,it - Ex2k,it)


it


1 sup E —= X (x2k,it — Ex2k,it)
N
i,t     T T t


for k = 1, 2. Finally, by Lemma 15(d), we have


11

e N∑D3TXC


x3k,it


EFzi x3k,it)


N suτp -TD3kτ


E -T X(x3k.it
t T t


2

0,


(60)


EFzi x3k,it)


0,


(61)

for k = 1, 2, 3. The results (59), (60) and (61) imply that I3,νtp 0.
Proof of (51): Notice that by (48) and (50),

^N X I1,i,NT^ 13,NT


^N X I2,i,NT^ i3,nt


2

N X Iι,i,NT   III3,NT∣∣2 = Op (1) Op (1) ;

i

2

N X I2,i,NT   ∣∣I3,NTIl2 = op (1) op (1) .

i

Thus, as (Ν,T →∞) ,

^N X I1,i,NT^ 13,NT,


^NF X I2,i,NT^ 13,NT p 0.

We now consider the (k,l)th term of N Pi I1,i,NTI'0iNT. By the Cauchy-
Schwarz inequality,

(N X


I1,i,NT 12 ,i,NT


k,l


(N X[(I1,i,NT)k]2^ (N X[(I2,i,NT)ι]2


42




More intriguing information

1. Revisiting The Bell Curve Debate Regarding the Effects of Cognitive Ability on Wages
2. LAND-USE EVALUATION OF KOCAELI UNIVERSITY MAIN CAMPUS AREA
3. Handling the measurement error problem by means of panel data: Moment methods applied on firm data
4. The name is absent
5. Commitment devices, opportunity windows, and institution building in Central Asia
6. Rural-Urban Economic Disparities among China’s Elderly
7. The name is absent
8. THE CHANGING RELATIONSHIP BETWEEN FEDERAL, STATE AND LOCAL GOVERNMENTS
9. Industrial Cores and Peripheries in Brazil
10. The name is absent