/ |
(I1,1) |
I1,21 |
I1,22 |
I1,31 |
I1,32 |
I1,33 |
0 |
/ |
I10 ,21 ∖ |
/ I20 1,21 |
I21,22 |
I21,31 |
I21,32 |
I21,33 | |
I1,22 |
I0 I21,22 |
I22,22 |
I22,31 |
I22,32 |
I22,33 | ||
I0 I1,31 |
I0 I21,31 |
I0 I22,31 |
I31,31 |
I31,32 |
I31,32 |
0 | |
I1,32 |
I0 I21,32 |
I0 I22,32 |
I0 I31,32 |
I32,32 |
I32,33 | ||
к |
I10,33 |
I20 1,33 |
I0 I22,33 |
I0 I31,33 |
I0 I32,33 |
I33,33 | |
∖ |
0 |
0 |
0 |
where the partition is made conformable to the size of
00 0 0 0 0 0
x1,it, x21,it, x22,it, x31,it, x32,it, x33,it, zi .
We now consider each element in N Pi I1,i,NTI'1 i NT. For I1,1, notice that by
Lemma 15(a),
N X (xι,i - Exι,i) (xι,i — Exι,i)0
i
≤ N X IKi — EXι,ik2 ≤ N X T X kxι,it - Exι,itk2 = Op (1).
Since each element in the diagonal matrix D1T tends to zero, we have
I1,1 = N X D1T (Xι,i — Exι,i) (xι,i — Ex1,i)0 D1T
= D1T Oi p(1)D1T=op(1).
Next we consider the second diagonal block of ɪ Pi Iι,i,NTI'ι i NT. Define
_ √τ ( X2,i — Ex2,i ʌ
qiT = T X3,i — EFzix3,i J;
QiT = qiT qi0T .
Then, by Lemma 15 (b) and (d), for some constant q>1,
supE kQiT k2q = supE kqiT k4q < ∞,
which verifies the condition (37) of Corollary 14. In consequence, from Corollary
14 and Assumption 8(i), we have
T ,X /(x2,i
N ÷ V'
x3,i
—Ex2,i )(x2,i —Ex2,i)0
—EFzi X3,i) (x2,i —Ex2,i)
(x2,i — Ex2,i)(x3,i — EFzi χ3,i)0
(x3,i — EFzi x3,iXx^3,ii —EFzi x3,i¢ '
= ⅛∑ τ∑∑
i ts
/ (x2,it — Ex2,it)
× (x2,is — Ex2,is)0
(x3,it — EFzi x3,it)
× (x2,is — Ex2,is)0
(X2,it — EX2,it) ∖
× (x3,is EFzi x3,is¢
x3,it — EFzi x3,it 0
× (x3,is EFzi x3,is¢ /
- 1 , 1∙ 1 pn - Г γ22 Г23 A
= Ν∑Q∙T →p lNm N XEQiT -(^ Γ23 Γ33 J,
ii
39