Then, under Assumption 11, as (N, T →∞), the followings hold.
(a) NN Pi Dtwiw0DT →p ξ
(b) supN tsup1≤i≤N E \\DTwik4 < M, for some constant M < ∞.
(c) √N Pi DTwi⅛ ⇒ N (≡λ, σU≡0 .
(d) √N Pi DTW^iVi →p 0.
Proof
Part (a)
To find the joint limit of
N X DTwJiwJ0DT =
i
1
∖UD (wji
i
— w) (wi — w)' DT,
we define
Ew = Ex^Ex'^EFiχ3,i,zi)' ;
E*W = (Ex01,Ex'2,EFzx'3,z').
With this notation, we write
1
NλJh (wi
i
— w) (Wi
— w)' Dt
= NXDt [(wui — E*iw^i) + (E*iWi — E*wj) + (E*w — wu)]
i
× [(w7i — E*ιvi) + (EiWi — E*w) + (E*w — w)]' Dt
-1X
N
i
(I1,i,N T+I2,i,NT+I3,N T)(I1,i,N T+I2,i,N T+I3,N T)' , say.
(47)
We complete the proof by showing the following:
N X I1,i,NTI1 ,i,NT |
→p Ξ1; |
(48) |
N X I2,i,NTI2,i,NT |
→p Ξ2; |
(49) |
I3,N T →p 0; and |
(50) | |
NX I1,i,NTI2,i,NT, nX I1,i,NTI3,NT , |
nX I2,i,NTI3,NT→p 0. |
(51) |
Proof of (48): Write
-1 X I1,i,NTI1 ,i,NT
i
38