for some finite constant M. But Assumption 4(i) and (iii) imply that the right-
hand side of the last inequality in (45) is finite. This completes the proof. ¥
7 Appendix B: Proofs of Main Results
Proof of Theorem 1
For the desired result, it is enough to prove that
{ω ∈ Ω∣αz (G, H) (ω) ≤ x} ∈ Z,
(46)
for all x ∈ R. Since the partition Π = {∏ι,..., ∏i, ...}of Ω generates the sigma
field Z , we have
sup |(Pz (G ∩ H))(ω) - (PzG)(ω)(PzH)(ω)∣
G∈G, H∈H
=
i∈I
sup
G∈G, H∈H
P (G ∩ H ∩ Πi) P (G ∩ Πi) P (H ∩ Πi)
P∏ P∏ P∏
1Πi (ω),
where 1Πi (ω) denotes the indicator function that equals one if ω ∈ Πi, and
otherwise equals zero. Let I = {1, 2, ..., i, ...} be the set of positive integers, and
let
Ix = i ∈ I |
sup
G∈G, H∈H
P (G ∩ H ∩ Πi) P (G ∩ Πi) P (H ∩ Πi)
P∏ P∏ P∏
≤x .
Then, we have (46) because
{ω ∈ Ω∣αz (G,H) (ω) ≤ x} = ⅛∏ ∈ Z. ¥
Before we start proving the lemmas and theorems in Section 4, we introduce
some additional lemmas that are used repeatedly below. Recall that wit =
x01,it,x02,it , x03,it ,zi0 . We also repeatedly use the diagonal matrix DT defined
in Section 4.
Lemma 16 Suppose that Assumptions 1-8 hold. Define Ξ = Ξ1 + Ξ2, where
Ξ1
Ξ2
Γ22,22 |
Γ22,31 Γ22,32 | |||||
diag |
0k1 , 0 |
0 k21 , Γ22,31 Γ0 Γ22,32 |
Γ31,31 Γ31,32 Γ031,32 Γ32,32 |
,0k33,0kz ; | ||
/ Γθι |
,Θ1 |
ΓΘ1,Θ21 0 |
0 |
rΘ1,μ32 |
rΘ1,μ33 |
0 |
Γ0 ΓΘ1 |
,Θ21 |
ΓΘ21,Θ21 0 |
0 |
r‰,μ32 |
γθ2∣,∕,33 |
0 |
0 |
00 |
0 |
0 |
0 |
0 | |
0 |
00 |
0 |
0 |
0 |
0 | |
Γ0 ΓΘ1 |
Γ0 0 |
0 |
Γ g32,g32 |
Γ g32 ,g33 |
Γ | |
,μ32 |
θ21,μ32 |
+Γ μ32,μ32 0 |
+Γ μ32,μ32 |
g32 ,z | ||
Γ0 |
Γ0 0 |
0 |
Γ0 g32,g33 |
Γ g33,g33 |
Γ | |
ΓΘ1 |
,μ33 |
θ21,μ33 |
+Γ0 μ32,μ32 |
+Γ μ33,μ33 |
g33,z | |
0 |
00 |
0 |
Γ0 g32,z |
Γ0 g33,z |
Γ |
/
37
More intriguing information
1. ¿Por qué se privatizan servicios en los municipios (pequeños)? Evidencia empírica sobre residuos sólidos y agua.2. Climate change, mitigation and adaptation: the case of the Murray–Darling Basin in Australia
3. The name is absent
4. The name is absent
5. The name is absent
6. The name is absent
7. Transgression et Contestation Dans Ie conte diderotien. Pierre Hartmann Strasbourg
8. The name is absent
9. The urban sprawl dynamics: does a neural network understand the spatial logic better than a cellular automata?
10. Gianluigi Zenti, President, Academia Barilla SpA - The Changing Consumer: Demanding but Predictable