as (N, T → ∞). Now, recall that
d2T
D3T
diag (D21τ,D22τ) = diag ∣Ik2,, √T⅛2} ;
diag (D31τ,D32τ,D33τ) = diag √TIlk3γ, VTlk32, (Tmh)ft) ,
where 0 ≤ mh,33 < ɪ for all h = 1, ...,k33. Therefore, as (N, T → ∞) ,
/i21,21 |
121,22 |
I21,31 |
I21,32 |
I21,33 |
0 |
0 |
0 |
0 |
0 | |
I0 |
I22,22 |
I22,31 |
I22,32 |
I22,33 |
0 |
γ22,22 |
Γ22,31 |
Γ22,32 |
0 | |
I0 |
I0 i 22,31 |
I31,31 |
I31,32 |
I31,32 |
→P |
0 |
Γ' γ 22,31 |
Γ31,31 |
Γ31,32 |
0 |
I0 |
I0 I22,32 |
I0 I31,32 |
I32,32 |
I32,33 |
0 |
Γ0 Γ22,32 |
Γ0 Γ31,32 |
Γ32,32 |
0 | |
∖121,33 |
I0 I22,33 |
I0 I31,33 |
I0 I32,33 |
I33,33 |
0 |
0 |
0 |
0 |
0 |
Finally, by the Cauchy-Schwarz inequality, the off-diagonal block component
I1,21 I1,22 I1,31 I1,32 I1,33 ) →p 0,
as (N, T → ∞).
Proof of (49): Recallthat
Etiuji = (Ep^E^EF-zi x3,i ,z'i)' ;
E*w = (Ex1, Ex2, EfzX3, z,).
Write
I2,i,NT
/ D1τ (EX1,l - EX1) ∖
EX21,l - EX21
0
= D31τ ((EFzi X31,i - EX31,i) - (EFz5⅛1 - EX31) + (EX31,i - EX31))
D32τ ((EFzi X32,i - EX32,i) - (EfzX32 - EX32) + (EX32,i - EX32))
D33τ ((EriX33,i - EX33,i) - (Efzx33 - EX33) + (EX33,i - EX33))
∖ Zi - z /
To obtain the required result, we use Lemma 12. By Assumption 6, as T → ∞,
we have
I2,i,NT → I2,i,N a.s. uniformly in i, (52)
where
/ H1Θ 1,i ∖
Θ 21,i
0
I - 0
I21,i,N = 1 г 1 1 .
H32 Lg32,i (zi) - N ∑i g32,i (zi)J + H32 μg32,i - N ∑i μg32,i
H33 [g33,i (zi) - N Pi g33,i (zi)] + H33 μg33,i - N Pi μg32,i
V zi - N Pi zi /
40