Appendix A
Proof of Theorem 1
First assume that αi and Σi are known so that zit = (αi0Σi-1αi)-1α0iΣi-1∆yit
and zi+t = zit - yi(,1t)-1 .
From Johansen (1991) it is known that in a cointegrated VAR(1) model
we have
t
yit = β⊥ (αi0,⊥β⊥)-1α0i,⊥ εis + uit ,
s=1
where uit is (asymptotically) stationary. From T -1/2 Pts=1 εis = T -1/2 P[ta=T1] εit ⇒
Bi (a), where Bi(a) ≡ Bi is a Brownian motion with covariance matrix Σi. It
follows that
T
BiBi0 αi,⊥ (β⊥0 αi,⊥)-1β⊥0
T - X yityi0t ⇒ β⊥(α0i,⊥β⊥)- α0i,⊥
t=1
Using E(f BiBi) = (1 /2)∑i we obtain
1
NT2
NT
XXyi(,2t)-1yi(,2t)-10
i=1 t=1
p
-→
-⅛ .
2 2
Furthermore,
t-1
εisvi0t
s=1
yi(,2t)-1 vi0t = β2,⊥(α0i,⊥β⊥)-1α0i,⊥
where vi0t = (α0iΣi-1αi)-1α0iΣi-1εit. Since εi,t-j is independent of vit for j ≥ 1
we have
1∙ 1 p
lιm —EB
T,N→∞ NT2
NT
ΣΣvec(yi(,2t)-1vi0t)vec(yi(,2t)-1vi0t)0
i=1 t=1
= lim E
T,N→∞
1
NT2
NT
XXyi(,2t)-1yi(,2t)-10
i=1 t=1
NT
NT ΣΣ Vitvit
i=1 t=1
= (1 /2)Ω2 ® ∑υ
and, therefore,
NT
^ N(0, 2Ω2 Θ ∑υ) .
T√7N ∑∑*c ( B -1 V0t )
T N i=1 t=1
15