A Principal Components Approach to Cross-Section Dependence in Panels



Table 1B. Monte Carlo simulation results

N =30,T

=25, γi

= 1, ρdi

=0, ρz

=0, σ2di =

1

A) Regression I

Mean

SSD

Min.

Max.

Skew.

Kurt-3

MG________________________________

ʌ
^

1.5070

.0766

1.2645

1.7224

-.2967

.0069

ʌ

SEι(θ)

.0305

.0048

.0171

.0479

.2111

.0868

FE_________________________________________

ʌ
^

1.4966

.0754

1.2460

1.7053

-.3233

.0326

ʌ

SEι(θ)

.0322

.0020

.0259

.0378

-.0169

-.1542

ʌ

SE2(θ)

.0567

.0035

.0465

.0659

.0043

-.0825

ʌ

SE3(θ)

.0716

.0137

.0410

.1318

.8815

1.2679

POLS_______________________________________

ʌ
^

1.4869

.0751

1.2406

1.6989

-.3207

.0052

ʌ

SE1(θ)

.0317

.0019

.0256

.0375

-.0124

-.1353

ʌ

SE2(θ)

.0567

.0034

.0461

.0656

.0082

-.0888

ʌ

SE3(θ)

.0717

.0132

.0366

.1296

.4597

.2201

B) Regression II

Mean

SSD

Min.

Max.

Skew.

Kurt-3

MG_______________________________

ʌ
b

1.1384

.0734

.9472

1.4178

.3728

.2719

ʌ

SE1(b)

.0374

.0052

.0201

.0539

.1556

-.1378

FE_________________________________________

ʌ
b

1.1279

.0709

.9565

1.3694

.3425

.2523

ʌ

SE1(b)

.0341

.0015

.0278

.0378

-.0736

.1013

ʌ

SE2(b)

.0355

.0024

.0297

.0488

.6921

1.3834

ʌ

SE3(b)

.0406

.0076

.0246

.0801

.8646

1.8745

POLS_______________________________________

ʌ
b

1.1243

.0689

.9539

1.3793

.3591

.2305

ʌ

SEi(b)

.0335

.0016

.0279

.0386

-.1084

.1745

ʌ

SE2(b)

.0355

.0024

.0299

.0492

.7604

1.8043

ʌ

SE3(b)

.0392

.0076

.0220

.0642

.5005

.2672

22



More intriguing information

1. Experimental Evidence of Risk Aversion in Consumer Markets: The Case of Beef Tenderness
2. APPLICATIONS OF DUALITY THEORY TO AGRICULTURE
3. Correlates of Alcoholic Blackout Experience
4. TRADE NEGOTIATIONS AND THE FUTURE OF AMERICAN AGRICULTURE
5. The name is absent
6. Spousal Labor Market Effects from Government Health Insurance: Evidence from a Veterans Affairs Expansion
7. The urban sprawl dynamics: does a neural network understand the spatial logic better than a cellular automata?
8. Cancer-related electronic support groups as navigation-aids: Overcoming geographic barriers
9. The name is absent
10. The name is absent