and
f if дг has a falling transition when path Pz
λr(Pz√) = < |
is stimulated by a rising transition; |
r otherwise. |
Similarly for a falling transition,
N
∑aPj(⅝λf(Pj,gi),gilgi = bj
i=l
(4.8)
where
f if gi has a falling transition when path Pz
ʌʃ(^i>C - * is stimulated by a falling transition;
r otherwise.
To write Equations 4.7 and 4.8 in a compact form, we define matrix A and
measurement vector b and variation vector 1 as follows.
aPι(X)ζλr(Pι,gι),gι ■ aP2 (.l)‰r(P2,g1),g1 ∙ |
• aP1{^')ζ^r(P1,gN),gN • aP2(-^)ζλr(P2,gN'),gN | |
A = |
аРм (l)ζλr(PM,gι),gι ∙ |
• 0iPm (N)ζλr(PM,gN'),g1∖∙ |
aPi (ɪ)ɑʃ(pɪ,gi),gi ∙ |
■ ар^КхЦр^ ,9 N | |
θiP2(^)ζλf(.P2,g1'),g1 ■ |
• αP2(^)^λ∕(P2,gjv),9N | |
a⅛(l)ξλ∕(PM,3ι),9ι ∙ |
• a⅛ (^)^λ^(P⅛r,3N),9W 2 |
45