dτ(Pj) = ⅛n°mina⅛) + ξ,,9Λ,
+ ⅛ominal(93) + ξtoZa,
+ ⅛"°mi"al(94) + ξ7.9Λ.
+ 4ominalta) + Ws.
+ daommal(37) + ξr,κls,, (4.6)
or
ζr,g1lg1 + €/,93^33 + ζr,g4lg4 + ζf,gβhβ + ζr,gτlg7 — bp1
bp1 = ⅛(p1)-<∕∞minal(31)-4ominalta)
p°mi"al⅛4) - 4a>minal⅛) - <∕yo"lir,al(<∕7)
bp1 is a constant. Thus, each sensitizable path in the circuit leads to a linear
relation among the variation elements, lgi. The falling and rising coefficients
(ζf,9i and ζr,9i) are kɪɪɑwn a-nd our goal is to estimate the variations, lgi.
Assume that Pi, P? ... Pm are M sensitizable paths in a gênerai combinational
circuit C with N gates. For each path P3, if it is stimulated by a rising transition,
N
^^aPj('i)ζλr(Pj,gi),gJgi = ⅛j
i=l
(4.7)
where
if gi belongs to the path Pj ;
otherwise,
44