A Consistent Nonparametric Test for Causality in Quantile



variance σ12(z) is o(1) with i.i.d data. We have

E% [H1T(s,t,Qθ)-H1T(s,t,Qθ-CT)]2

≤ Λ E% { [1t(Qθ) - Ft(Qθ)][1s(Qθ) - Fs(Qθ)]

-[1t(Qθ-CT)-Ft(Qθ-CT)][1s(Qθ-CT)-Fs(Qθ-CT)] }2

≤Λ E%{Ft(Qθ)[1-Ft(Qθ)]Fs(Qθ)[1-Fs(Qθ)]}

+E%{Ft(Qθ-CT)[1-Ft(Qθ-CT)]Fs(Qθ-CT)[1-Fs(Qθ-CT)]}

-2E{ [Ft(min(Qθ,Qθ-CT)-Ft(Qθ)Ft(Qθ-CT)]

×[Fs(min(Qθ,Qθ-CT)-Fs(Qθ)Fs(Qθ-CT)] }

E%{[Ft(Qθ)-Ft(Qθ)Ft(Qθ)][Fs(Qθ)-Fs(Qθ)Fs(Qθ)]}

E%{ [Ft(min(Qθ,Qθ-CT)-Ft(Qθ)Ft(Qθ-CT)]

×[Fs(min(Qθ,Qθ-CT)-Fs(Qθ)Fs(Qθ-CT)] }

E%{ [Ft(Qθ-CT)-Ft(Qθ-CT)Ft(Qθ-CT)]

×[Fs(Qθ-CT)-Fs(Qθ-CT)Fs(Qθ-CT)] }

E%{ [Ft(min(Qθ,Qθ-CT)-Ft(Qθ)Ft(Qθ-CT)]

×[Fs(min(Qθ,Qθ-CT)-Fs(Qθ)Fs(Qθ-CT)] }

≤Λ Ct = o (1).                                                       (A.20)

where the last equality holds by the smoothness of conditional distribution function and its

bounded first derivative due to Assumption (A.8). Thus we have

Thm,[ J,( Qθ ) - Jɪ( Qθ - C )] = Op (1)                                  (A.21)
[2]
Thm'2[J2(Qβ)- J2(Qβ -C)] = Op(1):

Noting that H2t (5, t, Qθ ) = 0 because of Fyz (Qθ (xs ) | zs ) - θ = 0, we have

J2(Qθ)-J2(Qθ-CT)

15



More intriguing information

1. Informal Labour and Credit Markets: A Survey.
2. Critical Race Theory and Education: Racism and antiracism in educational theory and praxis David Gillborn*
3. CREDIT SCORING, LOAN PRICING, AND FARM BUSINESS PERFORMANCE
4. The name is absent
5. The name is absent
6. 101 Proposals to reform the Stability and Growth Pact. Why so many? A Survey
7. The Effects of Attendance on Academic Performance: Panel Data Evidence for Introductory Microeconomics
8. Artificial neural networks as models of stimulus control*
9. Solidaristic Wage Bargaining
10. The name is absent