A (hTsL)1-α (1 - p)1-α nα = c +
nξ (1 - p)θ ρη
(30)
(31)
From these equations it is possible to get the steady-state values of the different
variables. In particular, from (26) we have:
β (1 + r) = 1 ⇒ 1 + r = ɪ ⇒ r =
β
Using from now on (31), so that we only write T, from (27) and (29) we obtain:
Ehδ (1 - T)1-δ
(1 - δ) Ehδ (1 - T)-δ
βδ (1 — T)
1-δ
1 - T _ βδ (1 - T)
1-δ
1-δ
+ βT
1 - T = βδ (1 - T)+ βT (1 - δ)
1 - βδ = T (1 + β - 2βδ)
T 1 - βδ
1 + β - 2βδ
From (29) (using the expression just found for T) we then get:
1 - βδ V-δ ⇒ h1-δ = Eμ β (1 -δ) y-δ
1 + β - 2βδ J V + β - 2βδ J
β (1 - δ)
1 + β - 2βδ
From (23) and (25) we then have:
θ-
η(1 - ρβ
-ξ
ρ
θp - η + ηp 1
α
αη
P
ξ)
α z z,,
-ξp = (η + θ) ρ - η
⇒ αη + αθ - ξ + αξ
P α (ξ + η + θ) - ξ
From (23) (using the expressions found above for the different variables) we obtain:
αAd (hTL)1-α (1 - p)1-α
ξ (1 - p)θ pη
nξ-α =
αAd (hTL)1-α (1 - p)1-α
PαAd∖ α
n = I .
ξ (1 - θ ρη
1
ɪ α ɪ α V n
(hTL)ξ-α (1 - p) ξ-α pα-ξ
1 -α
1 -α-θ
30