Technological progress, organizational change and the size of the Human Resources Department



A (hTsL)1 (1 - p)1-α nα = c +


nξ (1 - p)θ ρη


(30)


(31)

From these equations it is possible to get the steady-state values of the different
variables. In particular, from (26) we have:

β (1 + r) = 1 1 + r = ɪ r =
β

Using from now on (31), so that we only write T, from (27) and (29) we obtain:

Ehδ (1 - T)1-δ
(1 - δ) Ehδ (1 - T)-δ


βδ (1 T)


1-δ


1 - T _ βδ (1 - T)


1-δ


1-δ


+ βT


1 - T = βδ (1 - T)+ βT (1 - δ)

1 - βδ = T (1 + β - 2βδ)

T 1 - βδ

1 + β - 2βδ

From (29) (using the expression just found for T) we then get:

1 - βδ V-δ h1-δ = Eμ β (1 -δ) y-δ

1 + β - 2βδ J             V + β - 2βδ J

β (1 - δ)

1 + β - 2βδ

From (23) and (25) we then have:

θ-


η(1 - ρβ



ρ

θp - η + ηp 1


α
αη


P

ξ)


α          z z,,

-ξp = (η + θ) ρ - η


αη + αθ - ξ + αξ


P α (ξ + η + θ) - ξ


From (23) (using the expressions found above for the different variables) we obtain:

αAd (hTL)1-α (1 - p)1-α


ξ (1 - p)θ pη


nξ-α =


αAd (hTL)1-α (1 - p)1-α


PαAd α
n = I .


ξ (1 - θ ρη

1


ɪ α              ɪ α V     n

(hTL)ξ-α (1 - p) ξ-α pα-ξ


1 -α


1 -α-θ


30




More intriguing information

1. Telecommuting and environmental policy - lessons from the Ecommute program
2. Unemployment in an Interdependent World
3. The name is absent
4. The name is absent
5. The name is absent
6. O funcionalismo de Sellars: uma pesquisa histδrica
7. Empirical Calibration of a Least-Cost Conservation Reserve Program
8. The name is absent
9. Voluntary Teaming and Effort
10. LAND-USE EVALUATION OF KOCAELI UNIVERSITY MAIN CAMPUS AREA