From (17) we get:
∂h
∂E = 1
E τ⅛
δ
1 β (1 - δ) = E ⅛β
1 + β - 2βδ 1 + β -
and also:
∂h
∂β
„1 (1 - δ) (1 + β - 2βδ) - β (1 - δ) (1 - 2δ)
E 1—0
(1 + β - 2βδ)2
■ 1 + β — 2βδ — δ — βδ + 2βδ7 — β + 2βδ + βδ — 2βδ7
Ej 1 — δ --------------------------------------------------------------------------------------------
(1 + β — 2 ••■■■ 2
ι 1 — δ
E I—0 -----------------
(1+ β — 2βδ)2
and then:
∂h
∂δ
1 — β (1 + β — 2βδ) + 2β2 (1 — δ)
Ej 1—0 -------------------------------------------------------
(1 + β — 2βδ)2
β(1 — δ) 1 1
1 + β — 2βδE—S (1 — δ)2
log E =
E —β — β2 + 2β2δ + 2β2 — 2β2δ + Eʌ β l σ E
(1 + β — 2βδ)2 + (1 — δ)(1 + β — 2βδ)lθg
1
E1-0
β2 — β
(1+ β — 2βδ)2
1

β
(1 — δ)(1 + β — 2βδ)
log E =
E 1⅛ ∣^ β (β — 1) , β
1 + β — 2βδ [1 + β — 2βδ + 1 — δ
From (18) we have:
∂ρ = (α (ξ + η + θ) — ξ) η — αη (ξ + η + θ) =
dα ^ (α (ξ + η + θ) — ξ)2 ^
αξη + αη2 + αθη — ξη — αξη — αη2 — αθη ξη
(a (ξ + η + θ) — ξ)2 (a (ξ + η + θ) — ξ)2
and then:
∂ρ -№п ∙ α α2η
dθ (α (ξ + η + θ) — ξ)2 (α (ξ + η + θ) — ξ)2
and also:
∂ρ —oq (α — 1) αη (1 — α)
dξ (a (ξ + η + θ) — ξ)2 (a (ξ + η + θ) — ξ)2
and finally:
∂ρ (α (ξ + η + θ) — ξ) α — αη ∙ α
dη ~ (α (ξ + η + θ) — ξ)2 "^
α2ξ + α2η + α2θ — αξ — α2η α [α (ξ + θ) — ξ]
(a (ξ + η + θ) — ξ)2 (a (ξ + η + θ) — ξ)2
33
More intriguing information
1. THE CHANGING RELATIONSHIP BETWEEN FEDERAL, STATE AND LOCAL GOVERNMENTS2. The name is absent
3. The name is absent
4. The name is absent
5. The name is absent
6. Motivations, Values and Emotions: Three Sides of the same Coin
7. New Evidence on the Puzzles. Results from Agnostic Identification on Monetary Policy and Exchange Rates.
8. Sector Switching: An Unexplored Dimension of Firm Dynamics in Developing Countries
9. The name is absent
10. Modelling the Effects of Public Support to Small Firms in the UK - Paradise Gained?