From (19) we then have:
∂n
∂E
(1 - δ) (ξ
a)
aaAdλ ξ—a
kɪj
E (1-δ)(ξ-α)
L ξ-a
Zβ (1 - δ) (1 - βδ) ∖ξea
к (1+ β - 2βδ)2 ) •
and then:
∂n
∂L
and also:
∂n
∂A
•(a (ξ + θ) - ξ) ξ
—a
n
(an)a ξ (a (ξ + n + θ) - ξ)
(1 - δ) (ξ
a)
aaAdλ ξ—a
kɪj
1 — ξ(1 — δ) — aδ
1—a
E (1—δ)(ξ-a) Lξ-a
β( (1 - δ)(1 - βδ) λ ■a
I (1+ β - ∙>.βδ)'i )
•(a (ξ + θ) - ξ) ξ
n
(an)a—ξ (a (ξ + n + θ) - ξ)
a—ξ
ZaAd∖⅛
kɪj
E (1—й)(€—a) L £—a
•(a (ξ + θ) - ξ) ξ
∕β (1 - δ)(1 - βδ) λ -
I (1+ β - 2ββ)2 )
n
(an)a—ξ (a (ξ + n + θ) - ξ)
a—ξ
aaAdλ ξ—a
kɪj
• (a (ξ + θ) - ξ) ξ
aaAdλ ξ—a
kɪj
E (1— δ)(ξ — a) L ξ
• (a (ξ + θ) - ξ) ξ
ZaAdλ
kɪj
ββ (1 - δ) (1 - βδ) ∖ ' a
I (1 + β - 2βδ)2 ]
and finally:
∂n
∂d
n
(an)a ξ (a (ξ + n + θ) - ξ)
ad rπz - - , r
— E(1—^)(c—a) Lc—a
-a
1—ξ + a
c—a
• (a (ξ + θ) - ξ) ξ
a—ξ
_n
Zβ (1 - δ)(1 - βδ) ∖ 1≡a
к (1 + β - 2βδ)2 ) •
n
(an) ~ξ (a (ξ + n + θ) - ξ)
ad rπz - - , r
— E(1—δ)(ξ—a) Lξ—a
ξ
∕β (1 - δ) (1 - βδ) ∖
к (1 + β - 2βδ)2 )
n
(an) ~ξ (a (ξ + n + θ) - ξ)
a—ξ
aaAd∖ξ—a
kɪj
aA
• (a (ξ + θ) - ξ) ξ
ZaAd ∖
kɪj
----E(1 — δ)(ξ—a) Lξ—a
ξ
ββ (1 - δ) (1 - βδ) ∖ ' a
I (1 + β - 2βδ)2 ]
1—ξ + a
€—a
•(a (ξ + θ) - ξ) ξ
(an)a—ξ (a (ξ + П + θ) - ξ)
aA
1-α
----E (1 — δ)(ξ — a) L ξ — a
ξ
a—ξ
∕β (1 - δ) (1 - βδ) ∖ —
к (1+ β - 2βδ)2 )
(an)a—ξ (a (ξ + n + θ) - ξ)
a —θ -r∣
a—ξ
34