(aAd∖ξ-α μE⅛. β (1 -δ)
'•■ к 1+ β - 2β
1 —a
1 - βδ . l∖ s—a.
1 + β - 2βδ }
aη
a (ξ + n + θ) — ξ
1 — a —θ
∖ ξa Z an ∖
a ka (ξ + n + θ) - ξ)
n
α-ξ
( aAd A!—α e (—-a-а, l i——s μβ ι'1 - δ∏1 - βδ) ∖ 'a
key к (1+β - 2βδ)'2 J
1—a—θ n 1 —a —θ
• (a (ξ + θ) - ξ) «—a (an)a—ξ (a (ξ + n + θ) - ξ) a—ξ
From (24) we then have:
(1 - a) A (hTL)-α (1 - ρ)1-α nα
w = (1 - a) A (e 1b • 1 + β - 2βδ • 1 +1 β -β2βδ • l∖ (1 - a (ξ + aη + θ) -ξ∖
aaAd∖ a
AT J
a(1 —a) а (1 — а )
E (1—s)(i—a) L è—α
a(1 —a)
μ β (1 - S)(1 - βδ) ∖ a
к (1+ β - 2βδ)2 )
a(1 — а— θ) an a(1 -a-θ-η)
• (a (ξ + θ) - ξ) a (an)aξ (a (ξ + n + θ) - ξ) aξ
w = (1 - a)
aad∖ a
Ш
, ξ a(1 — ξ) a(1 — ξ)
Aξ—a E(1 — δ×ξ—a) L ξ—a
μ β (1 - S) (1 - βδ) ∖ ⅛⅛2
к (1 + β - 2βδ)2 )
ξ — a(ξ + θ) an a(ξ + n + θ) — ξ
• (a (ξ + θ) - ξ) ξ—a (an)a—ξ (a (ξ + n + θ) - ξ) ξ—a
From (30) we have:
c=
⇒
A (hTL)1-α (1 - ρ)1-α nα
β (1 - S)
nξ (1 - ρ)) ρn
aaAd∖ ξ-a
’к O
a(1 — a) a (1 — a )
E (1 — δ×ξ — a) L ξ — a
d
1 - βδ • l ∖ α μ _ an \ '
+ β - 2βδ J y a (ξ + n + e) - ξj
a(1 a)
μβ (1 - S) (1 - βS) \ —
к (1 + β - 2βδ)2 )
a(1 a θ) an a(1 a θ n)
• (a (ξ + θ) - ξ) ξ—a (an) ~ξ (a (ξ + n + θ) - ξ) ~ξ +
ξ ξ(1 — a)
1 aaAdλ ξ—a E(1 ξ δ1)(a ) )lξξ1—a) ββ (1 - S) (1 - βδ)k ξ—a
d ∖ ξ / \ (1 + β - 2βδ^ )
ξ(1 — a — θ) ξn ξ(1 — a — θ — n)
• (a (ξ + θ) - ξ) ξ—a (an)a—ξ (a (ξ + n + θ) - ξ) a—ξ
• μ1__an ∖θ μ an \n
к a (e + n + - ξ) ka (e + n + 0) - ξ√
31