2.3.2 First-order Kuhn-Tucker conditions
The first-order Kuhn-Tucker conditions are computed by forming and maximizing the
following Lagrangean with respect to τt, qt and kt+1:
max L =
τt, qt, kt+ι
X ( qtτtAk? )1 σ -
t⅛ (1 - σ)(1 + P)t
XXX (T⅛{kt+1 -+(1 -τt)(1 -α)Ak‘} +
XX jɪ: {ln[(1 - Tt +1)] + ln[(1 - qt+1)Tt+ι Ak^ + l] - ln l}
∑ (T+>{qt - 1}
The first-order Kuhn-Tucker conditions are :
∂ L
τt^~
∂τt
(qtτtAkα)1 σ - λtτt {
μt-1(1 + P) τt I -——
1 - τt
1+β(1 - α) A -
. (1 - qt ) Akα ¾
(1 - qt)τtAkα +1 f
(16)
qt7r = ( qtτtAkt )1 -σ +
∂qt
+ qlμl-1(1+ρ ) ½ (1 - q,AA k+1 ¾ - qtit=o (17)
∂ L
dkt +1
= α (qtτt+1 a)1 σkt+1 ) - λt(1 + P) +
+ λt+1 11 + βα(1 - α)(1 - τt+1)Akt+x1! -
(18)
(1 - qt+1)τt+1 aAkt+1 ¾
(1 - qt +1 ) τt +1 Akt+1 + l ʃ
=0
18