On Dictatorship, Economic Development and Stability



2.3.2 First-order Kuhn-Tucker conditions

The first-order Kuhn-Tucker conditions are computed by forming and maximizing the

following Lagrangean with respect to τt, qt and kt+1:

max L =
τt, qt, kt


X ( qtτtAk? )1 σ -

t(1 - σ)(1 + P)t

XXX (T⅛{kt+1 -+(1 -τt)(1 -α)Ak} +

XX jɪ: {ln[(1 - Tt +1)] + ln[(1 - qt+1)TtAk^ + l] - ln l}

∑ (T+>{qt - 1}

The first-order Kuhn-Tucker conditions are :

∂ L

τt^~
∂τ
t


(qtτtAkα)1 σ - λtτt {
μ
t-1(1 + P) τt I -——
1 - τt

1+β(1 - α) A -
.    (1 - qt ) Akα ¾

(1 - qt)τtAkα +1 f

(16)


qt7r = ( qtτtAkt )1 +

∂qt

+ qlμl-1(1+ρ ) ½ (1 - q,AA k+1 ¾ - qtit=o           (17)


∂ L

dkt +1


= α (qtτt+1 a)1 σkt+1 )   - λt(1 + P) +


+ λt+1 11 + βα(1 - α)(1 - τt+1)Akt+x1! -


(18)


(1 - qt+1)τt+1 aAkt+1 ¾

(1 - qt +1 ) τt +1 Akt+1 + l ʃ


=0


18




More intriguing information

1. Barriers and Limitations in the Development of Industrial Innovation in the Region
2. On the job rotation problem
3. Assessing Economic Complexity with Input-Output Based Measures
4. The Shepherd Sinfonia
5. An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image
6. Ruptures in the probability scale. Calculation of ruptures’ values
7. The Institutional Determinants of Bilateral Trade Patterns
8. The demand for urban transport: An application of discrete choice model for Cadiz
9. The name is absent
10. Income Growth and Mobility of Rural Households in Kenya: Role of Education and Historical Patterns in Poverty Reduction