Nonparametric cointegration analysis



corresponding to the r zero eigenvalues. Then:

Lemma 2. Under Assumption 3 and the conditions of Lemma 1,

         ^ï

RrTD (1) Y1 ^F1(x)2dx


Fk(1)RrτD,Z


RrM(!) ft

RM z (Fk) n

V k 7

jointly in k = 1,...,m, where the Yk ’s andZ are independent q-variate standard normally
distributed, with Y
k defined by (13). Moreover, Z does not depend on Fk .

Such weight functions Fk do exist. In particular,

Lemma 3. If Fk(x) = cos(2kπx), then the conditions (6) through (10) hold. Moreover, we then

have Fk(1) = 1, ʃʃFk(x)Fk(y)min(xy) dxdy = 1(kπ y2, ʃFk(x)2dx = 1.

There are many ways to choose these functions Fk, but as will be shown in section 5, the
above choice is optimal in some sense.

Denoting

Fk(x )2 dx


γ k =            j

y ^^I^k(x )Fk((y )min(x, y ) dxdy


, δk


Fk (1)

ʃFk (x )2 dx


(14)


it follows now easily from Lemmas 1-2:



More intriguing information

1. Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State Level, 1963-1997
2. Analyse des verbraucherorientierten Qualitätsurteils mittels assoziativer Verfahren am Beispiel von Schweinefleisch und Kartoffeln
3. Examining Variations of Prominent Features in Genre Classification
4. L'organisation en réseau comme forme « indéterminée »
5. On the Existence of the Moments of the Asymptotic Trace Statistic
6. Improvement of Access to Data Sets from the Official Statistics
7. The name is absent
8. Chebyshev polynomial approximation to approximate partial differential equations
9. Commuting in multinodal urban systems: An empirical comparison of three alternative models
10. The name is absent