Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test



where G1 = G-,1TA1-1G-,1T .

Notice that

θT GR1G-,1T´ = θTG-T (A1 + θ2Fι)-1 G⅛
×Gx,TF1Gx,TG1Gx,TF1Gx,TG1.

Lemma 2(a) and Assumption 12 imply

G1 =Op(1).

In addition, by Lemma 2(c)

Gx,TF1Gx,T= Jx-,T1 Dx,T F1Dx,T Jx-,T1 =Op(1),           (102)

since Jx-,T1 = O (1) . Thus,

σ2θ2r (g-,1tRiG⅛´ = Op (θT) = op (1).             (103)

Now, consider

θτ √NT θT G-,1τ R2

=  θτT [√Tg-,1t (A-1F1A-1F2) + Tg-,1tRi (A2 + θTF2)]

n'2  -~ 1   - 1z-y -1            -   ʌf/ɑ-1   -1 -1        √~V

= θτ VT


θT Gx,T A1 Gx,T (Gx,TF1Gx,T) Gx,T A1 Gx,T Gx,T NF2

+θT (g-,1tRiG-,tX√NGχ,τA2 + θTNGχ,τF2)

Under the local alternatives (Assumption 11), we may deduce from Lemmas 2
and 3 that

Gι, Gχ,τFιGχ,τ, Gχ,τVNf2 = Op (1) ;

θT GRiG-,T ) , NGχ,τA2 = op (1).

Since θτ T = O (1) , we have

θτVntθTg,1tR2 = O (1) 2τOp (1) + op (1)] = op (1).      (104)

Using the results (103) and (104) , we now can approximate the Hausman
statistic as follows:

HMNT

= θτNT [(-T1DDχ,τFιDχ,τ J-1τ) (GιGχ,τA2) - J-TDχ,τF2 + op (1)] 0
σv

× ( Jχ-τDχ,τFτDχ,τ J-τ + op (1)) -l

×θτNT [ J-τDχ,τFτDχ,τ JχΓ (GτGχ,τA2) - J-τDχ,τF2 + op (1)]
σv

= θτNT (Dχ,τF2)0 (Dχ,τFτDχ,τ)-1 — √NT (Dχ,τF2)

σv                                  σv

+op (1) .

62



More intriguing information

1. The role of statin drugs in combating cardiovascular diseases
2. Two-Part Tax Controls for Forest Density and Rotation Time
3. Beyond Networks? A brief response to ‘Which networks matter in education governance?’
4. The name is absent
5. Cultural Diversity and Human Rights: a propos of a minority educational reform
6. Urban Green Space Policies: Performance and Success Conditions in European Cities
7. Does Market Concentration Promote or Reduce New Product Introductions? Evidence from US Food Industry
8. Perfect Regular Equilibrium
9. Endogenous Determination of FDI Growth and Economic Growth:The OECD Case
10. Death as a Fateful Moment? The Reflexive Individual and Scottish Funeral Practices