where G1 = G-,1TA1-1G-,1T .
Notice that
θT GR1G-,1T´ = θTG-T (A1 + θ2Fι)-1 G⅛
×Gx,TF1Gx,TG1Gx,TF1Gx,TG1.
Lemma 2(a) and Assumption 12 imply
G1 =Op(1).
In addition, by Lemma 2(c)
Gx,TF1Gx,T= Jx-,T1 Dx,T F1Dx,T Jx-,T1 =Op(1), (102)
since Jx-,T1 = O (1) . Thus,
σ2θ2r (g-,1tRiG⅛´ = Op (θT) = op (1). (103)
Now, consider
θτ √NT θT G-,1τ R2
= θτ√T [√NθTg-,1t (A-1F1A-1F2) + √NθTg-,1tRi (A2 + θTF2)]
n'2 -~ 1 - 1z-y -1 - ʌf/ɑ-1 -1 -1 √ √~V
= θτ VT
θT Gx,T A1 Gx,T (Gx,TF1Gx,T) Gx,T A1 Gx,T Gx,T NF2
+θT (g-,1tRiG-,tX√NGχ,τA2 + θT√NGχ,τF2)
Under the local alternatives (Assumption 11), we may deduce from Lemmas 2
and 3 that
Gι, Gχ,τFιGχ,τ, Gχ,τVNf2 = Op (1) ;
θT GRiG-,T ) , √NGχ,τA2 = op (1).
Since θτ √T = O (1) , we have
θτVntθTg—,1tR2 = O (1) [θ2τOp (1) + op (1)] = op (1). (104)
Using the results (103) and (104) , we now can approximate the Hausman
statistic as follows:
HMNT
= θτ√NT [(-T1DDχ,τFιDχ,τ J-1τ) (GιGχ,τA2) - J-TDχ,τF2 + op (1)] 0
σv
× ( Jχ-τDχ,τFτDχ,τ J-τ + op (1)) -l
×θτ√NT [ J-τDχ,τFτDχ,τ JχΓ (GτGχ,τA2) - J-τDχ,τF2 + op (1)]
σv
= θτ√NT (Dχ,τF2)0 (Dχ,τFτDχ,τ)-1 — √NT (Dχ,τF2)
σv σv
+op (1) .
62
More intriguing information
1. The name is absent2. Innovation in commercialization of pelagic fish: the example of "Srdela Snack" Franchise
3. The English Examining Boards: Their route from independence to government outsourcing agencies
4. ISSUES AND PROBLEMS OF IMMEDIATE CONCERN
5. The name is absent
6. THE CHANGING RELATIONSHIP BETWEEN FEDERAL, STATE AND LOCAL GOVERNMENTS
7. Monetary Discretion, Pricing Complementarity and Dynamic Multiple Equilibria
8. The name is absent
9. Wettbewerbs- und Industriepolitik - EU-Integration als Dritter Weg?
10. INSTITUTIONS AND PRICE TRANSMISSION IN THE VIETNAMESE HOG MARKET