Observe that for any conformable matrices P and Q, we have
(P + Q)-1 - P-1 = -P-1QP-1 + (P + Q)-1 QP-1QP-1.
Using this fact, we write
(A1 + θ2τF1)-1 - A-1 = -θTA-1F1A-1 + θTR1, (100)
where R1 = (A1 + θ2τF1)-1 F1A-1F1A-1. Define
Q = (A1 + θTF1 )-1 √NT (A2 + θTF2) - A-1 √NTA2.
Then,
Q
= (A1 + θTF1)-1 √NT (A2 + θTF2) - A-1√NT (A2 + θTF2)
+A-1 √NT θT F2
= {(A1 + θTF1)-1 - A-11 √NT {A2 + θTF2} + A-1 √NTθTF2
= -A-1 (θTF1) A-1 √NT {A2 + θTF2} + A-1 √NTθTF2
+θT R1 √NT {A2 + θT F2}
= -θT √NT [A-1F1A-1A2
-a-1f2] -θT √NT
θT A-1F1A-1F2
- θT R1 {A2 + θT F2j∙
= -θT√NT ∣A-1F1 A-1A2 - A-1 F2] - θT√NTr2, (101)
where R2 = A-1F1A-1F2 - R1 {A2 + θTF2} .
In view of (100) and (101) , we now can rewrite the Hausman statistic as
HMnt = Q [σ^A-1 - σ2 (A1 + θTF1)-1]-1 Q
= θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] '
× [σV A-1F1A-1 - σ2 θTR1] -1
×θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] ;
or equivalently,
HMnt
= θτ √NT
G1
J-TDχ,τF1Dχ,τ Jχ-T) G1Gχ,τ
-G1 Jx-1 Dχ,τ F2 + θ2 G-1τ R2
A2
× [σ2 G1 J' ' F ■ D J ' ) G1 + σ2 θT (⅛ r1g⅛) ] "ɪ
×θτ √NT
G1
Jχ,TDχ,τF1Dχ,τ J-T) G1Gχ,τA2
G1 Jx-T Dχ,τ F2 + θT G-1τ R2
61
More intriguing information
1. Opciones de política económica en el Perú 2011-20152. Herman Melville and the Problem of Evil
3. A Critical Examination of the Beliefs about Learning a Foreign Language at Primary School
4. The name is absent
5. Evolving robust and specialized car racing skills
6. Estimating the Impact of Medication on Diabetics' Diet and Lifestyle Choices
7. The name is absent
8. The English Examining Boards: Their route from independence to government outsourcing agencies
9. Transport system as an element of sustainable economic growth in the tourist region
10. The name is absent