Observe that for any conformable matrices P and Q, we have
(P + Q)-1 - P-1 = -P-1QP-1 + (P + Q)-1 QP-1QP-1.
Using this fact, we write
(A1 + θ2τF1)-1 - A-1 = -θTA-1F1A-1 + θTR1, (100)
where R1 = (A1 + θ2τF1)-1 F1A-1F1A-1. Define
Q = (A1 + θTF1 )-1 √NT (A2 + θTF2) - A-1 √NTA2.
Then,
Q
= (A1 + θTF1)-1 √NT (A2 + θTF2) - A-1√NT (A2 + θTF2)
+A-1 √NT θT F2
= {(A1 + θTF1)-1 - A-11 √NT {A2 + θTF2} + A-1 √NTθTF2
= -A-1 (θTF1) A-1 √NT {A2 + θTF2} + A-1 √NTθTF2
+θT R1 √NT {A2 + θT F2}
= -θT √NT [A-1F1A-1A2
-a-1f2] -θT √NT
θT A-1F1A-1F2
- θT R1 {A2 + θT F2j∙
= -θT√NT ∣A-1F1 A-1A2 - A-1 F2] - θT√NTr2, (101)
where R2 = A-1F1A-1F2 - R1 {A2 + θTF2} .
In view of (100) and (101) , we now can rewrite the Hausman statistic as
HMnt = Q [σ^A-1 - σ2 (A1 + θTF1)-1]-1 Q
= θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] '
× [σV A-1F1A-1 - σ2 θTR1] -1
×θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] ;
or equivalently,
HMnt
= θτ √NT
G1
J-TDχ,τF1Dχ,τ Jχ-T) G1Gχ,τ
-G1 Jx-1 Dχ,τ F2 + θ2 G-1τ R2
A2
× [σ2 G1 J' ' F ■ D J ' ) G1 + σ2 θT (⅛ r1g⅛) ] "ɪ
×θτ √NT
G1
Jχ,TDχ,τF1Dχ,τ J-T) G1Gχ,τA2
G1 Jx-T Dχ,τ F2 + θT G-1τ R2
61
More intriguing information
1. Direct observations of the kinetics of migrating T-cells suggest active retention by endothelial cells with continual bidirectional migration2. Optimal Vehicle Size, Haulage Length, and the Structure of Transport Costs
3. The name is absent
4. Developing vocational practice in the jewelry sector through the incubation of a new ‘project-object’
5. An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image
6. PRIORITIES IN THE CHANGING WORLD OF AGRICULTURE
7. The name is absent
8. Comparative study of hatching rates of African catfish (Clarias gariepinus Burchell 1822) eggs on different substrates
9. Party Groups and Policy Positions in the European Parliament
10. The name is absent