Observe that for any conformable matrices P and Q, we have
(P + Q)-1 - P-1 = -P-1QP-1 + (P + Q)-1 QP-1QP-1.
Using this fact, we write
(A1 + θ2τF1)-1 - A-1 = -θTA-1F1A-1 + θTR1, (100)
where R1 = (A1 + θ2τF1)-1 F1A-1F1A-1. Define
Q = (A1 + θTF1 )-1 √NT (A2 + θTF2) - A-1 √NTA2.
Then,
Q
= (A1 + θTF1)-1 √NT (A2 + θTF2) - A-1√NT (A2 + θTF2)
+A-1 √NT θT F2
= {(A1 + θTF1)-1 - A-11 √NT {A2 + θTF2} + A-1 √NTθTF2
= -A-1 (θTF1) A-1 √NT {A2 + θTF2} + A-1 √NTθTF2
+θT R1 √NT {A2 + θT F2}
= -θT √NT [A-1F1A-1A2
-a-1f2] -θT √NT
θT A-1F1A-1F2
- θT R1 {A2 + θT F2j∙
= -θT√NT ∣A-1F1 A-1A2 - A-1 F2] - θT√NTr2, (101)
where R2 = A-1F1A-1F2 - R1 {A2 + θTF2} .
In view of (100) and (101) , we now can rewrite the Hausman statistic as
HMnt = Q [σ^A-1 - σ2 (A1 + θTF1)-1]-1 Q
= θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] '
× [σV A-1F1A-1 - σ2 θTR1] -1
×θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] ;
or equivalently,
HMnt
= θτ √NT
G1
J-TDχ,τF1Dχ,τ Jχ-T) G1Gχ,τ
-G1 Jx-1 Dχ,τ F2 + θ2 G-1τ R2
A2
× [σ2 G1 J' ' F ■ D J ' ) G1 + σ2 θT (⅛ r1g⅛) ] "ɪ
×θτ √NT
G1
Jχ,TDχ,τF1Dχ,τ J-T) G1Gχ,τA2
G1 Jx-T Dχ,τ F2 + θT G-1τ R2
61
More intriguing information
1. Evaluating the Impact of Health Programmes2. Foreword: Special Issue on Invasive Species
3. CONSUMER ACCEPTANCE OF GENETICALLY MODIFIED FOODS
4. A production model and maintenance planning model for the process industry
5. Changing spatial planning systems and the role of the regional government level; Comparing the Netherlands, Flanders and England
6. The name is absent
7. Inflation and Inflation Uncertainty in the Euro Area
8. The name is absent
9. The name is absent
10. A Dynamic Model of Conflict and Cooperation