Observe that for any conformable matrices P and Q, we have
(P + Q)-1 - P-1 = -P-1QP-1 + (P + Q)-1 QP-1QP-1.
Using this fact, we write
(A1 + θ2τF1)-1 - A-1 = -θTA-1F1A-1 + θTR1, (100)
where R1 = (A1 + θ2τF1)-1 F1A-1F1A-1. Define
Q = (A1 + θTF1 )-1 √NT (A2 + θTF2) - A-1 √NTA2.
Then,
Q
= (A1 + θTF1)-1 √NT (A2 + θTF2) - A-1√NT (A2 + θTF2)
+A-1 √NT θT F2
= {(A1 + θTF1)-1 - A-11 √NT {A2 + θTF2} + A-1 √NTθTF2
= -A-1 (θTF1) A-1 √NT {A2 + θTF2} + A-1 √NTθTF2
+θT R1 √NT {A2 + θT F2}
= -θT √NT [A-1F1A-1A2
-a-1f2] -θT √NT
θT A-1F1A-1F2
- θT R1 {A2 + θT F2j∙
= -θT√NT ∣A-1F1 A-1A2 - A-1 F2] - θT√NTr2, (101)
where R2 = A-1F1A-1F2 - R1 {A2 + θTF2} .
In view of (100) and (101) , we now can rewrite the Hausman statistic as
HMnt = Q [σ^A-1 - σ2 (A1 + θTF1)-1]-1 Q
= θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] '
× [σV A-1F1A-1 - σ2 θTR1] -1
×θτ√NT [A-1F1A-1A2 - A-1F2 + θTR2] ;
or equivalently,
HMnt
= θτ √NT
G1
J-TDχ,τF1Dχ,τ Jχ-T) G1Gχ,τ
-G1 Jx-1 Dχ,τ F2 + θ2 G-1τ R2
A2
× [σ2 G1 J' ' F ■ D J ' ) G1 + σ2 θT (⅛ r1g⅛) ] "ɪ
×θτ √NT
G1
Jχ,TDχ,τF1Dχ,τ J-T) G1Gχ,τA2
G1 Jx-T Dχ,τ F2 + θT G-1τ R2
61
More intriguing information
1. The name is absent2. Pricing American-style Derivatives under the Heston Model Dynamics: A Fast Fourier Transformation in the Geske–Johnson Scheme
3. THE WELFARE EFFECTS OF CONSUMING A CANCER PREVENTION DIET
4. The role of statin drugs in combating cardiovascular diseases
5. Standards behaviours face to innovation of the entrepreneurships of Beira Interior
6. The Shepherd Sinfonia
7. Optimal Rent Extraction in Pre-Industrial England and France – Default Risk and Monitoring Costs
8. On the Real Exchange Rate Effects of Higher Electricity Prices in South Africa
9. The name is absent
10. Dynamiques des Entreprises Agroalimentaires (EAA) du Languedoc-Roussillon : évolutions 1998-2003. Programme de recherche PSDR 2001-2006 financé par l'Inra et la Région Languedoc-Roussillon