A MARKOVIAN APPROXIMATED SOLUTION TO A PORTFOLIO MANAGEMENT PROBLEM




Fig. 9. Approximating strategies for t = 9
(5=.2).


Fig. 11. Approximating strategies for t = 9
(5 = .05).


t=9                          δ=.1; h=10000 -:- 100

0.9 I-------------------------------------1-------------------------------------1-------------------------------------1-------------------------------------1-------------------------------------1---------------------------

0.8-...............i.................:.................i................∖................i...........-

0.7                                      ......:.................

S 0.6-...............i.................:.................i................∖................i...........-

0.5-...............  :.................:................:................  -

0.4-...............i.................:.................i................∖................i...........-

0.3∣-------------------------------------i-------------------------------------i-------------------------------------i-------------------------------------i-------------------------------------i---------------------------

0                 2                 4                 6                 8                 10

weath                                           x 104


Fig. 10. Approximating strategies for t = 9
(5=.1).


Fig. 12. Approximating strategies for t = 9
(5= .02 “small”).


Indeed, the gap between the optimal strategy and
the approximating strategies for t = O is narrow
for 5 = .2 and closes for 5 = .1 (for reasonably
small
h) whereas, for t = 9, it narrows down only
for smaller 5s, see Figures 11 and 12. This is to
be expected because the optimal
U2(T) = ∞,
and U2(T) = ∞ (see (32) and (30)), which is
impossible to reproduce numerically.

Figure 13 shows the wealth and strategy reali-
sations for 5 = .05 and
h = 100. They look
very similar to the optimal ones in Figure 4. The
simulation of 2000 noise realisations and the appli-
cation of the approximating policy rules computed
for the same parameters (i.e., 5 = .05 and
h =
100) resulted in the utility distribution (integrated
with the time simulation step equal to .025) shown
in Figure 14.

The mean discounted utility is J = 715.4 (98.9 %
optimal) and the corresponding standard devia-
tion is 161. However, the portfolio performance

10




More intriguing information

1. The name is absent
2. References
3. THE ECONOMICS OF COMPETITION IN HEALTH INSURANCE- THE IRISH CASE STUDY.
4. The Making of Cultural Policy: A European Perspective
5. THE WELFARE EFFECTS OF CONSUMING A CANCER PREVENTION DIET
6. Internationalization of Universities as Internationalization of Bildung
7. The Role of area-yield crop insurance program face to the Mid-term Review of Common Agricultural Policy
8. Education and Development: The Issues and the Evidence
9. INSTITUTIONS AND PRICE TRANSMISSION IN THE VIETNAMESE HOG MARKET
10. Spectral density bandwith choice and prewightening in the estimation of heteroskadasticity and autocorrelation consistent covariance matrices in panel data models
11. Palvelujen vienti ja kansainvälistyminen
12. AGRICULTURAL PRODUCERS' WILLINGNESS TO PAY FOR REAL-TIME MESOSCALE WEATHER INFORMATION
13. Multimedia as a Cognitive Tool
14. Strategic Investment and Market Integration
15. On the Desirability of Taxing Charitable Contributions
16. The name is absent
17. Økonomisk teorihistorie - Overflødig information eller brugbar ballast?
18. ESTIMATION OF EFFICIENT REGRESSION MODELS FOR APPLIED AGRICULTURAL ECONOMICS RESEARCH
19. Detecting Multiple Breaks in Financial Market Volatility Dynamics
20. Has Competition in the Japanese Banking Sector Improved?