A MARKOVIAN APPROXIMATED SOLUTION TO A PORTFOLIO MANAGEMENT PROBLEM




Fig. 9. Approximating strategies for t = 9
(5=.2).


Fig. 11. Approximating strategies for t = 9
(5 = .05).


t=9                          δ=.1; h=10000 -:- 100

0.9 I-------------------------------------1-------------------------------------1-------------------------------------1-------------------------------------1-------------------------------------1---------------------------

0.8-...............i.................:.................i................∖................i...........-

0.7                                      ......:.................

S 0.6-...............i.................:.................i................∖................i...........-

0.5-...............  :.................:................:................  -

0.4-...............i.................:.................i................∖................i...........-

0.3∣-------------------------------------i-------------------------------------i-------------------------------------i-------------------------------------i-------------------------------------i---------------------------

0                 2                 4                 6                 8                 10

weath                                           x 104


Fig. 10. Approximating strategies for t = 9
(5=.1).


Fig. 12. Approximating strategies for t = 9
(5= .02 “small”).


Indeed, the gap between the optimal strategy and
the approximating strategies for t = O is narrow
for 5 = .2 and closes for 5 = .1 (for reasonably
small
h) whereas, for t = 9, it narrows down only
for smaller 5s, see Figures 11 and 12. This is to
be expected because the optimal
U2(T) = ∞,
and U2(T) = ∞ (see (32) and (30)), which is
impossible to reproduce numerically.

Figure 13 shows the wealth and strategy reali-
sations for 5 = .05 and
h = 100. They look
very similar to the optimal ones in Figure 4. The
simulation of 2000 noise realisations and the appli-
cation of the approximating policy rules computed
for the same parameters (i.e., 5 = .05 and
h =
100) resulted in the utility distribution (integrated
with the time simulation step equal to .025) shown
in Figure 14.

The mean discounted utility is J = 715.4 (98.9 %
optimal) and the corresponding standard devia-
tion is 161. However, the portfolio performance

10




More intriguing information

1. Robust Econometrics
2. CREDIT SCORING, LOAN PRICING, AND FARM BUSINESS PERFORMANCE
3. Volunteering and the Strategic Value of Ignorance
4. Wirtschaftslage und Reformprozesse in Estland, Lettland, und Litauen: Bericht 2001
5. The name is absent
6. The name is absent
7. Subduing High Inflation in Romania. How to Better Monetary and Exchange Rate Mechanisms?
8. The name is absent
9. Target Acquisition in Multiscale Electronic Worlds
10. Structural Influences on Participation Rates: A Canada-U.S. Comparison