Testing the Information Matrix Equality with Robust Estimators



When ^ is equivariant, IF(X,Y; ^; Fθ) = σIF(u; ^5Φ). Hence V = σ 4C
with C a partitioned matrix with blocks

C11 = 2 Ek [vech( XX ' )(vech( XX ' )) ' ]

+(Bιι - 2)Ek[vech(XX')]Ek[vech(XX')]',

C22 = B 22 Ek ( XX ' ),

C33 = B33 ,

C13  =  B13 Ek [vech( XX ' )] = C 31,

C12  =  C21 = 0, C 23 = C3 2 = 0,

and all Bij as in Section 3. Again, V does not depend on the choice of the
estimator of the location parameter
β . Replacing EK with sample averages
yields an estimate
C of C. For a given θ = (β' , ^) ', let Ui = (Yi — X,i3')/σ
and

1 n / (U2 1)vech(XiX') ∖    / N^1

N = - Σ      ( u 3 3 u i ) Xi      =   N^2   

n i=1    U4 5 U 2 + 2    /     N3 /

Then T takes the form

(ʌ » ʌ 1 1 ʌ        ʌ » ʌ nn ʌ        ʌ , ʌ OO ʌ          ʌ , ʌ to ʌ ∖

N1 C11TV1 + N2C22IN2 + N3C33N3 + 2N1C13N3 ,

where Cij is the (i,j)-th block of (C+.

If θ is the ML estimator and the first column of X is a vector of ones, then
the first element of
C11 is zero, B13 =0andB33 = 24. Let p = k(k + 1)/2,
with
k =dim(/), and

L = 0p-1×1 Ip-1 ,

Li = L vech( XiX'),
1n

L = - ∑ Li
n
i=1

Then the IM test statistic with ML estimator can be written as (Hall, -987)
n                 n                          -1 n

T = 2∑(U2 1)Li{∑(Li — L)(Li — L)T ∑(U2 1)Li
i
=1              i=1                         i=1

nn   n    n

+6ΣU3Xi'(∑XiXiy ΣU3Xi + 24∑(Ui 3)2
i=1        i=1            i=1             i=1

19



More intriguing information

1. Design and investigation of scalable multicast recursive protocols for wired and wireless ad hoc networks
2. Urban Green Space Policies: Performance and Success Conditions in European Cities
3. 09-01 "Resources, Rules and International Political Economy: The Politics of Development in the WTO"
4. Testing Panel Data Regression Models with Spatial Error Correlation
5. The name is absent
6. The name is absent
7. The name is absent
8. Howard Gardner : the myth of Multiple Intelligences
9. Ronald Patterson, Violinist; Brooks Smith, Pianist
10. The name is absent