When ^ is equivariant, IF(X,Y; ^; Fθ) = σIF(u; ^5Φ). Hence V = σ 4C
with C a partitioned matrix with blocks
C11 = 2 Ek [vech( XX ' )(vech( XX ' )) ' ]
+(Bιι - 2)Ek[vech(XX')]Ek[vech(XX')]',
C22 = B 22 Ek ( XX ' ),
C33 = B33 ,
C13 = B13 Ek [vech( XX ' )] = C 31,
C12 = C21 = 0, C 23 = C3 2 = 0,
and all Bij as in Section 3. Again, V does not depend on the choice of the
estimator of the location parameter β . Replacing EK with sample averages
yields an estimate C of C. For a given θ = (β' , ^) ', let Ui = (Yi — X,i∣3')/σ
and
1 n / (U2 — 1)vech(XiX') ∖ / N^1 ∖
N = - Σ ( u 3 — 3 u i ) Xi = N^2 ∙
n i=1 ∖ U4 — 5 U 2 + 2 / ∖ N3 /
Then T takes the form
(ʌ » ʌ 1 1 ʌ ʌ » ʌ nn ʌ ʌ , ʌ OO ʌ ʌ , ʌ to ʌ ∖
N1 C11TV1 + N2C22IN2 + N3C33N3 + 2N1C13N3∖ ,
where Cij is the (i,j)-th block of (C+.
If θ is the ML estimator and the first column of X is a vector of ones, then
the first element of C11 is zero, B13 =0andB33 = 24. Let p = k(k + 1)/2,
with k =dim(/), and
L = 0p-1×1 Ip-1 ,
Li = L vech( XiX'),
1n
L = - ∑ Li∙
n
i=1
Then the IM test statistic with ML estimator can be written as (Hall, -987)
n n -1 n
T = 2∑(U2 — 1)Li{∑(Li — L)(Li — L)T ∑(U2 — 1)Li
i=1 i=1 i=1
nn n n
+6ΣU3Xi'(∑XiXiy ΣU3Xi + 24∑(Ui — 3)2∙
i=1 i=1 i=1 i=1
19
More intriguing information
1. The name is absent2. Benchmarking Regional Innovation: A Comparison of Bavaria, Northern Ireland and the Republic of Ireland
3. Graphical Data Representation in Bankruptcy Analysis
4. Banking Supervision in Integrated Financial Markets: Implications for the EU
5. Large Scale Studies in den deutschen Sozialwissenschaften:Stand und Perspektiven. Bericht über einen Workshop der Deutschen Forschungsgemeinschaft
6. Notes on an Endogenous Growth Model with two Capital Stocks II: The Stochastic Case
7. Structure and objectives of Austria's foreign direct investment in the four adjacent Central and Eastern European countries Hungary, the Czech Republic, Slovenia and Slovakia
8. Brauchen wir ein Konjunkturprogramm?: Kommentar
9. The name is absent
10. Tax Increment Financing for Optimal Open Space Preservation: an Economic Inquiry